The Probabilistic Theory of the Three-Phase Structure Seminvariant in $\boldsymbol{P} \mathbf{2}_{1}$, with Applications

By Herbert Hauptman and Stephen Potter
Medical Foundation of Buffalo Inc., 73 High Street, Buffalo, New York 14203, USA

(Received 27 July 1978: accepted 23 November 1978)

Abstract

By embedding the three-phase structure seminvariant T_{0} and its symmetry-related variants T_{1}, T_{2} and T_{3} in suitable quintets Q_{0}, Q_{1}, Q_{2} and Q_{3}, respectively, one obtains the extensions Q_{j} of the seminvariants T_{j}. Owing to the space-group dependent relationships among the phases, the value of T_{0} is simply related to the values of the Q_{j} 's. Thus the probabilistic theory of the seminvariant T_{0} is reduced to that of quintets, which is well developed. In particular the discriminant Δ of T_{0} is defined in terms of the discriminant of the quintet, and extreme values of Δ are correlated with extreme values of T_{0} in the sense that $T_{0} \simeq 0$ or π according as $\Delta \gg 0$ or $\Delta \ll 0$, respectively. Applications to two real structures in $P 2_{1}$ are described which show the usefulness of these results in the solution of crystal structures.

1. Introduction

Our major goal is to present a formula, (3.19), which will be useful in the identification and estimation of those three-phase structure seminvariants in $P 2_{1}$ having the extreme values 0 or π. In order not to distract or confuse the reader interested in making the applications, no details of the derivations are presented. Instead, only a few introductory paragraphs are given connecting this paper with the earlier work on extensions and relating the present work to the probabilistic theory of quintets (via the neighborhood concept), in particular the quintet discriminant. The remainder of the paper is devoted simply to a description of the major result, equation (3.19), and to applications of (3.19) to two structures in $P 2_{1}$. These applications show the usefulness of the three-phase structure seminvariants in the determination of crystal structures.

Suppose that

$$
\begin{equation*}
T_{0}=\varphi_{h_{1} k_{1} l}+\varphi_{h_{2} k_{2} l_{2}}+\varphi_{h_{3} k_{3} l_{3}} \tag{1.1}
\end{equation*}
$$

is a structure seminvariant in $P 2_{1}$. Then

$$
\begin{equation*}
\left(h_{1} k_{1} l_{1}\right)+\left(h_{2} k_{2} l_{2}\right)+\left(h_{3} k_{3} l_{3}\right) \equiv 0 \bmod (202) \tag{1.2}
\end{equation*}
$$

i.e. $h_{1}+h_{2}+h_{3}$ and $l_{1}+l_{2}+l_{3}$ are even integers and

$$
\begin{equation*}
k_{1}+k_{2}+k_{3}=0 \tag{1.3}
\end{equation*}
$$

By embedding T_{0} and its three symmetry related variants,

$$
\begin{align*}
& T_{1}=\varphi_{\bar{h}_{1} k_{1} \bar{l}_{1}}+\varphi_{h_{2} k_{2} l_{2}}+\varphi_{h_{3} k_{3} l_{3}} \tag{1.4}\\
& T_{2}=\varphi_{h_{1} k_{1} l_{1}}+\varphi_{\bar{h}_{2} k_{2} \bar{l}_{2}}+\varphi_{h_{3} k_{3} l_{3}} \tag{1.5}
\end{align*}
$$

and

$$
\begin{equation*}
T_{3}=\varphi_{h_{1} k_{1} l_{1}}+\varphi_{h_{2} k_{2} l_{2}}+\varphi_{\bar{h}_{3} k_{3} \bar{l}_{3}}, \tag{1.6}
\end{equation*}
$$

in suitable quintets (five-phase structure invariants), Q_{0}, Q_{1}, Q_{2}, and Q_{3}, respectively, one obtains the extensions Q_{j} of $T_{j}, j=0,1,2,3$, (Hauptman, 1978; but see also Giacovazzo, 1977, for a similar concept). If one defines integers H_{j} and $L_{j}, j=0,1,2,3$, by means of
$H_{0}=\frac{1}{2}\left(h_{1}+h_{2}+h_{3}\right), \quad L_{0}=\frac{1}{2}\left(l_{1}+l_{2}+l_{3}\right)$,
$H_{1}=\frac{1}{2}\left(-h_{1}+h_{2}+h_{3}\right), \quad L_{1}=\frac{1}{2}\left(-l_{1}+l_{2}+l_{3}\right)$,
$H_{2}=\frac{1}{2}\left(h_{1}-h_{2}+h_{3}\right), \quad L_{2}=\frac{1}{2}\left(l_{1}-l_{2}+l_{3}\right)$,
$H_{3}=\frac{1}{2}\left(h_{1}+h_{2}-h_{3}\right), \quad L_{3}=\frac{1}{2}\left(l_{1}+l_{2}-l_{3}\right)$,
then the extensions Q_{j} of T_{j} are defined by

$$
\begin{equation*}
Q_{j}=T_{j}+\varphi_{\bar{H}_{j} K_{j} \bar{L}_{j}}+\varphi_{\bar{H}_{j} \bar{K}_{j} \bar{L}_{j}} \tag{1.11}
\end{equation*}
$$

where the four (positive) integers $K_{j}, j=0,1,2,3$, are arbitrary. Then the Q_{j} are five-phase structure invariants (quintets). It then follows from the space-group dependent relationships among the phases (Hauptman, 1978) that
$T_{0}=Q_{j}+\pi\left[\frac{1}{2}-\frac{1}{2} \cos \pi\left(k_{j}+K_{j}\right)\right], \quad j=0,1,2,3$,
provided that k_{0} is defined by

$$
\begin{equation*}
k_{0}=0 \tag{1.13}
\end{equation*}
$$

In this way the probabilistic theory of the three-phase structure seminvariant T_{0} is reduced to the probabilistic theory of quintets, which is well developed. In particular, for fixed positive integers $K_{j}, j=0,1,2,3$, the second neighborhood of T_{0} consists of the settheoretic union of the second neighborhoods of the four extensions $Q_{j}, j=0,1,2,3$, i.e. 41 magnitudes $|E|$ © 1979 International Union of Crystallography
in all. Since the four integers $K_{j}, j=0,1,2,3$, are arbitrary, there are many second neighborhoods, one for each set of four positive integers K_{j}.

It should perhaps be stressed that the extension concept enables one merely to identify the neighborhoods of the structure seminvariants. There remains the more time consuming task of deriving the conditional probability distribution of the seminvariant, given the magnitudes in any of its neighborhoods, using a mathematical formalism previously described (e.g. Hauptman, 1975a,b; Fortier \& Hauptman, 1977a; Hauptman \& Fortier, 1977; van der Putten \& Schenk, 1977). However, the problem of deriving distributions sufficiently accurate to be useful in the applications appears to be quite difficult in general and has been solved only in a few cases so far.

2. The second neighborhoods

In view of earlier work on quintets (Schenk, 1975; Hauptman, 1977), the second neighborhood of the special quintet $Q_{0}(1.11)$ is known to consist of fourteen magnitudes $|E|$, the four distinct 'main terms'

$$
\begin{equation*}
\left|E_{h_{1} k_{1} l_{1}}\right|,\left|E_{h_{2} k_{2} l_{2}}\right|,\left|E_{h_{3} k_{3} l_{3}}\right|,\left|E_{H_{0} K_{0} L_{0}}\right| \tag{2.1}
\end{equation*}
$$

and the ten 'cross-terms'

$$
\begin{gather*}
\left|E_{h_{1}+h_{2} k_{3}, l_{1}+l_{2}}\right|,\left|E_{h_{2}+h_{3}, k_{1}, l_{2}+l_{3}}\right|,\left|E_{h_{3}+h_{1}, k_{2} l_{3}+l_{1}}\right|, \\
\left|E_{H_{1}, k_{1} \pm K_{0}, L_{1},}\right|,\left|E_{H_{2} k_{2} \pm K_{0, L},}\right|,\left|E_{H_{3}, k_{3} \pm K_{0}, L_{3}}\right| \\
\left|E_{2 H_{0}, 0,2 L_{0}}\right|, \tag{2.2}
\end{gather*}
$$

where K_{0} is an arbitrary positive integer. In a similar way the fourteen-magnitude second neighborhoods of Q_{1}, Q_{2} and Q_{3} are found. However only 41 of the $14 \times$ $4=56$ magnitudes constituting the four second neighborhoods of Q_{0}, Q_{1}, Q_{2} and Q_{3} turn out to be distinct. Thus the second neighborhood of T_{n} is found to consist of the 41 magnitudes:

$$
\begin{align*}
& r_{i}=\left|E_{h_{i} k_{i} l_{i}}\right|, \quad i=1,2,3 ; \tag{2.3}\\
& R_{j}=\left|E_{H_{j} K_{j} L_{j}}\right|, \quad j=0,1,2,3 ; \tag{2.4}\\
& r_{12}=\left|E_{h_{1}+h_{2}, k_{3} l_{1}+l_{2}}\right|, \quad r_{1 \overline{2}}=\left|E_{h_{1}-h_{2}, k_{3}, l-l_{2}}\right| ; \tag{2.5}\\
& r_{23}=\left|E_{h_{2}+h_{3}, k_{1}, l_{2}+l_{3}}\right|, \quad r_{2 \overline{3}}=\left|E_{h_{2}-h_{3}, k_{1}, l_{2}-l_{3}}\right| ; \tag{2.6}\\
& r_{31}=\left|E_{h_{3}+h_{1}, k_{2}, l_{3}+l_{1}}\right|, \quad r_{3 \overline{1}}=\left|E_{h_{3}-h_{1}, k_{2}, l_{3}-l_{1}}\right| ; \tag{2.7}\\
& R_{0 j}=\left|E_{2 H_{j}, 0,2 L_{j}}\right|, \quad j=0,1,2,3 ; \tag{2.8}\\
& R_{10}=\left|E_{H_{1}, k_{1}+K_{0}, L_{1}}\right|, \quad R_{1 \overline{0}}=\left|E_{H_{1}, k_{1}-K_{0}, L_{1}}\right| ; \tag{2.9}\\
& R_{20}=\left|E_{H_{2}, k_{2}+K_{0} . L_{2}}\right|, \quad R_{2 \overline{0}}=\left|E_{H_{2}, k_{2}-K_{0}, L_{2}}\right| ; \tag{2.10}\\
& R_{30}=\left|E_{H_{3}, k_{3}+K_{0}, L_{3}}\right|, \quad R_{3 \overline{0}}=\left|E_{H_{3}, k_{3}-K_{0}, L_{3}}\right|, \tag{2.11}\\
& R_{11}=\left|E_{H_{\phi} k_{1}+K_{1}, L_{0}}\right|, \quad R_{1 \overline{1}}=\left|E_{H_{0}, k_{1}-K_{1}, L_{0}}\right| ; \tag{2.12}\\
& R_{21}=\left|E_{H_{3}, k_{2}+K_{1}, L_{3}}\right|, \quad R_{2 \overline{1}}=\left|E_{H_{3}, k_{2}-K_{1}, L_{3}}\right| ; \tag{2.13}\\
& R_{31}=\left|E_{H_{2}, k_{3}+K_{1}, L_{2}}\right|, \quad R_{3 \overline{1}}=\left|E_{H_{2}, k_{3}-K_{1}, L_{2}}\right| ; \tag{2.14}
\end{align*}
$$

$$
\begin{array}{ll}
R_{12}=\left|E_{H_{3}, k_{1}+K_{2}, L_{3}}\right|, & R_{1 \overline{2}}=\left|E_{H_{3}, k_{1}-K_{2}, L_{3}}\right| ; \\
R_{22}=\left|E_{H_{0}, k_{2}+K_{2}, L_{0}}\right|, & R_{2 \overline{2}}=\left|E_{H_{0}, k_{2}-K_{2}, L_{0}}\right| ; \\
R_{32}=\left|E_{H_{1}, k_{3}+K_{2}, L_{1}}\right|, & R_{3 \overline{2}}=\left|E_{H_{1}, k_{3}-K_{2}, L_{1}}\right| ; \\
R_{13}=\left|E_{H_{2}, k_{1}+K_{3}, L_{2}}\right|, & R_{1 \overline{3}}=\left|E_{H_{2}, k_{1}-K_{3}, L_{2}}\right| ; \\
R_{23}=\left|E_{H_{1}, k_{2}+K_{3}, L_{1}}\right|, & R_{2 \overline{3}}=\left|E_{H_{1}, k_{2}-K_{3}, L_{1}}\right| ; \\
R_{33}=\left|E_{H_{0}, k_{3}+K_{3}, L_{0}}\right|, & R_{3 \overline{3}}=\left|E_{H_{0}, k_{3}-K_{3}, L_{0}}\right| . \tag{2.20}
\end{array}
$$

The logical next step would be to derive the conditional probability distribution of T_{0}, given the 41 magnitudes in its second neighborhood, using techniques previously described (e.g. Hauptman \& Fortier, 1977). However, owing to the enormity of this task, this attempt has not yet been made. Instead, a more modest goal was set. It was decided to derive the exponential form of the conditional probability distribution of each quintet Q_{j} (a relatively easy task), given the 14 magnitudes in its second neighborhood, in effect the discriminant of the quintet (Hauptman \& Fortier, 1977; Fortier \& Hauptman, 1977b). It is already known from this earlier work that extreme values of the discriminant, whether large and positive or large and negative, are well correlated with the extreme values, 0 or π respectively, of the quintet. Thus, by employing only those extensions Q_{j} the magnitudes of whose discriminants are extremely large, one identifies, via (1.12), those structure seminvariants T_{0} having the extreme values 0 or π, approximately. In view of the earlier work on the discriminant, only the final results are briefly summarized in the sequel.

3. The discriminant of \boldsymbol{T}_{0}

The discriminant of the three-phase structure seminvariant T_{0} is defined in terms of the discriminants of the extensions Q_{j} of $T_{j}, j=0,1,2,3$.

3.1. The discriminant of the quintet Q_{0}

For each value of

$$
\begin{equation*}
K_{0}=1,2,3, \ldots \tag{3.1}
\end{equation*}
$$

one calculates the discriminant of the quintet Q_{0} by means of

$$
\begin{align*}
\Delta_{K_{0}}=\frac{2}{\sigma_{2}^{9 / 2}} & {\left[\sigma_{3}^{3} \sum_{15}^{K_{0}}-\sigma_{3}\left(3 \sigma_{3}^{2}-\sigma_{2} \sigma_{4}\right) \sum_{10}^{K_{0}}\right.} \\
& \left.+\left(15 \sigma_{3}^{3}-10 \sigma_{2} \sigma_{3} \sigma_{4}+\sigma_{2}^{2} \sigma_{5}\right)\right], \tag{3.2}
\end{align*}
$$

where

$$
\begin{align*}
\sum_{10}^{K_{0}}=r_{12}^{2} & +r_{23}^{2}+r_{31}^{2} \\
& +R_{00}^{2}+R_{10}^{2}+R_{1 \overline{0}}^{2}+R_{20}^{2}+R_{2 \overline{0}}^{2}+R_{30}^{2}+R_{3 \overline{0}}^{2} \tag{3.3}
\end{align*}
$$

$$
\begin{gather*}
\sum_{15}^{K_{0}}=r_{12}^{2}\left(R_{00}^{2}+R_{30}^{2}+R_{3 \overline{0}}^{2}\right)+r_{23}^{2}\left(R_{00}^{2}+R_{10}^{2}+R_{10}^{2}\right) \\
+r_{31}^{2}\left(R_{00}^{2}+R_{20}^{2}+R_{2 \overline{0}}^{2}\right)+\left(R_{10}^{2} R_{2 \overline{0}}^{2}+R_{20}^{2} R_{3 \overline{0}}^{2}\right. \\
\left.+R_{30}^{2} R_{1 \overline{0}}^{2}\right)+\left(R_{10}^{2} R_{20}^{2}+R_{2 \overline{0}}^{2} R_{30}^{2}+R_{3 \overline{0}}^{2} R_{10}^{2}\right)
\end{gather*}
$$

f_{j} is the zero-angle atomic scattering factor of the atom labeled j, and N is the number of atoms in the whole unit cell. In the X -ray diffraction case the f_{j} are equal to the atomic numbers Z_{j} and are therefore all positive; in the neutron diffraction case some of the f_{j} may be negative.

3.2. The discriminant of the quintet Q_{1}

For each value of

$$
\begin{equation*}
K_{1}=1,2,3, \ldots \tag{3.6}
\end{equation*}
$$

one calculates the discriminant of Q_{1} by means of

$$
\begin{align*}
\Delta_{K_{1}}=\frac{2}{\sigma_{2}^{9 / 2}} & {\left[\sigma_{3}^{3} \sum_{15}^{K_{1}}-\sigma_{3}\left(3 \sigma_{3}^{2}-\sigma_{2} \sigma_{4}\right) \sum_{10}^{K_{1}}\right.} \\
+ & \left.\left(15 \sigma_{3}^{3}-10 \sigma_{2} \sigma_{3} \sigma_{4}+\sigma_{2}^{2} \sigma_{5}\right)\right] \tag{3.7}
\end{align*}
$$

where

$$
\begin{gather*}
\sum_{10}^{K_{1}}=r_{1 \overline{1}}^{2}+r_{23}^{2}+r_{31}^{2}+R_{01}^{2}+R_{11}^{2}+R_{11}^{2}+R_{21}^{2} \\
 \tag{3.8}\\
+R_{2 \overline{1}}^{2}+R_{31}^{2}+R_{3 \overline{1}}^{2}
\end{gather*}
$$

and

$$
\begin{align*}
& \sum_{15}^{K_{1}}= r_{12}^{2} \\
&\left(R_{01}^{2}+R_{31}^{2}+R_{31}^{2}\right)+r_{23}^{2}\left(R_{01}^{2}+R_{11}^{2}+R_{11}^{2}\right) \\
&+r_{31}^{2}\left(R_{01}^{2}+R_{21}^{2}+R_{21}^{2}\right) \\
&+\left(R_{11}^{2} R_{21}^{2}+R_{21}^{2} R_{31}^{2}+R_{31}^{2} R_{11}^{2}\right) \tag{3.9}\\
&+\left(R_{11}^{2} R_{21}^{2}+R_{21}^{2} R_{31}^{2}+R_{31}^{2} R_{11}^{2}\right) .
\end{align*}
$$

3.3. The discriminant of the quintet Q_{2}

For each value of

$$
\begin{equation*}
K_{2}=1,2,3, \ldots \tag{3.10}
\end{equation*}
$$

one calculates the discriminant of Q_{2} by means of

$$
\begin{align*}
\Delta_{K_{2}}=\frac{2}{\sigma_{2}^{9 / 2}} & {\left[\sigma_{3}^{3} \sum_{15}^{K_{2}}-\sigma_{3}\left(3 \sigma_{3}^{2}-\sigma_{2} \sigma_{4}\right) \sum_{10}^{K_{2}}\right.} \\
+ & \left.\left(15 \sigma_{3}^{3}-10 \sigma_{2} \sigma_{3} \sigma_{4}+\sigma_{2}^{2} \sigma_{5}\right)\right] \tag{3.11}
\end{align*}
$$

where

$$
\begin{align*}
\sum_{10}^{K_{2}}=r_{12}^{2} & +r_{2 \overline{3}}^{2}+r_{31}^{2}+R_{02}^{2}+R_{12}^{2}+R_{1 \overline{2}}^{2}+R_{22}^{2} \\
& +R_{2 \overline{2}}^{2}+R_{32}^{2}+R_{3 \overline{2}}^{2} \tag{3.12}
\end{align*}
$$

and

$$
\begin{align*}
\sum_{15}^{K_{2}}=r_{12}^{2} & \left(R_{02}^{2}+R_{32}^{2}+R_{3 \overline{2}}^{2}\right)+r_{2 \overline{3}}^{2}\left(R_{02}^{2}+R_{12}^{2}+R_{1 \overline{2}}^{2}\right) \\
& +r_{31}^{2}\left(R_{02}^{2}+R_{22}^{2}+R_{2 \overline{2}}^{2}\right) \\
& +\left(R_{12}^{2} R_{2 \overline{2}}^{2}+R_{22}^{2} R_{32}^{2}+R_{32}^{2} R_{1 \overline{2}}^{2}\right) \\
& +\left(R_{1 \overline{2}}^{2} R_{22}^{2}+R_{2 \overline{2}}^{2} R_{32}^{2}+R_{3 \overline{2}}^{2} R_{12}^{2}\right) \tag{3.13}
\end{align*}
$$

3.4. The discriminant of the quintet Q_{3}

For each value of

$$
\begin{equation*}
K_{3}=1,2,3, \ldots \tag{3.14}
\end{equation*}
$$

one calculates the discriminant of Q_{3} by means of

$$
\begin{align*}
\Delta_{K_{3}}=\frac{2}{\sigma_{2}^{92}} & {\left[\sigma_{3}^{3} \sum_{15}^{K_{3}}-\sigma_{3}\left(3 \sigma_{3}^{2}-\sigma_{2} \sigma_{4}\right) \sum_{10}^{K_{3}}\right.} \\
& \left.+\left(15 \sigma_{3}^{3}-10 \sigma_{2} \sigma_{3} \sigma_{4}+\sigma_{2}^{2} \sigma_{5}\right)\right] \tag{3.15}
\end{align*}
$$

where

$$
\begin{gather*}
\sum_{10}^{K_{3}}=r_{12}^{2}+r_{2 \overline{3}}^{2}+r_{31}^{2}+R_{03}^{2}+R_{13}^{2}+R_{1 \overline{3}}^{2}+R_{23}^{2} \\
+ \tag{3.16}
\end{gather*}
$$

and

$$
\begin{align*}
\sum_{15}^{K_{3}}=r_{12}^{2} & \left(R_{03}^{2}+R_{33}^{2}+R_{33}^{2}\right)+r_{2 \overline{3}}^{2}\left(R_{03}^{2}+R_{13}^{2}+R_{1 \overline{3}}^{2}\right) \\
& +r_{3 \overline{1}}^{2}\left(R_{03}^{2}+R_{23}^{2}+R_{2 \overline{3}}^{2}\right) \\
& +\left(R_{13}^{2} R_{2 \overline{3}}^{2-}+R_{23}^{2} R_{33}^{2-}+R_{33}^{2} R_{1 \overline{3}}^{2}\right) \\
& +\left(R_{1 \overline{3}}^{2} R_{23}^{2}+R_{2 \overline{3}}^{2-} R_{33}^{2}+R_{3 \overline{3}}^{2} R_{13}^{2}\right) \tag{3.17}
\end{align*}
$$

3.5. The discriminant of the structure seminvariant T_{0}

For each fixed structure seminvariant T_{0}, arrange the collection

$$
\begin{align*}
& r_{1} r_{2} r_{3}\left(R_{0}^{2}-1\right) \Delta_{K_{0}}, \quad r_{1} r_{2} r_{3}\left(R_{1}^{2}-1\right) \Delta_{K_{1}} \\
& r_{1} r_{2} r_{3}\left(R_{2}^{2}-1\right) \Delta_{K_{2},}, \quad r_{1} r_{2} r_{3}\left(R_{3}^{2}-1\right) \Delta_{K_{3}} \\
& K_{j}=1,2,3, \ldots ; \quad j=0,1,2,3 \tag{3.18}
\end{align*}
$$

in decreasing order of magnitude and select the largest n of them where n is some small number, e.g. $n=1,2$, 3,4 or 5 . Using these n numbers construct, in view of (1.12), the 'discriminant' of T_{0},

$$
\begin{equation*}
\Delta=\left\langle r_{1} r_{2} r_{3}\left(R_{j}^{2}-1\right) \Delta_{K_{j}} \cos \pi\left(k_{j}+K_{j}\right)\right\rangle_{K_{j}} \tag{3.19}
\end{equation*}
$$

where the average is taken over the $n K_{j}$'s corresponding to the n largest values of

$$
\begin{gather*}
\left|r_{1} r_{2} r_{3}\left(R_{j}^{2}-1\right) \Delta_{K_{j}}\right| \\
K_{j}=1,2,3, \ldots, j=0,1,2,3 \tag{3.20}
\end{gather*}
$$

and, by definition,

$$
\begin{equation*}
k_{0}=0 \tag{3.21}
\end{equation*}
$$

If $n=1$ then only one term contributes to (3.19), that one of (3.18) whose magnitude is largest. In this way one obtains a discriminant Δ for each structure seminvariant T_{0} lin actuality several discriminants, one for each value of n, the number of contributors to the
average in (3.19); however, as described in the sequel, the initial applications suggest that only the case $n=1$ is needed].

Arrange the $|\Delta|$'s in decreasing order. Recall that according as $r_{1} r_{2} r_{3}\left(R_{j}^{2}-1\right) \Delta_{K_{i}}$ is large and positive or

Table 1. Identity of 200 cosines of three-phase structure seminvariants calculated to be ± 1 employing (3.19) for aldosterone monohydrate, $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$, space group $P 2_{1}$

Seminvariant Triple															
Serial	${ }^{\prime}$	k_{1}	${ }_{1}$	n_{2}	k_{2}	l_{2}	h_{3}	k_{3}	${ }^{2}$	A	No. of Quintets	No. of Cross Terms	Discr.	$\begin{gathered} \text { Calc } \\ \text { Cos } \end{gathered}$	True Cos
1	1	0	-12	10	0	-14	11	0	-2	6.15	7	7	-418.3	-1	-1.00
2	6	0	-10	3	0	8	11	0	-2	6.15	20	10	-389.0	-1	-1.00
3	9	0	-2	7	1	-10	4	-1	8	4.66	20	10	-323.3	-1	-0.97
4*	10	1	-2	9	0	-2	1	-1	0	7.39	17	9	-319.4	-1	-0.83
5	9	0	-2	11	1	-14	0	-1	12	5.45	12	10	-300. 3	-1	-0.93
6	5	0	-4	4	0	2	11	0	-2	5.90	23	10	-251.0	-1	-1.00
7	10	1	-2	3	0	8	5	-1	-10	4.47	20	10	234.6	$+1$	0.79
8*	6	0	-10	1	1	0	7	-. 1	-10	7.23	17	9	-225.0	-1	-0.99
9**	10	1	-2	1	-1	0	11	0	-2	5.74	17	9	211.5	+1	0.83
10	1	0	-12	10	1	-2	9	-1	-14	4.92	11	10	207.3	$+1$	0.52
11	9	0	-2	4	0	2	7	0	-4	3.42	25	10	-203.5	-1	-1.00
12	5	0	-4	10	1	-2	3	-1	2	5.74	23	10	197.7	+1	0.91
13	7	1	-10	9	-2	-2	4	1	8	4.29	17	10	-186.4	-1	-0.99
14	9	0	-2	3	0	8	8	0	-10	3.47	21	10	-181.0	-1	-1.00
15	6	0	-10	9	0	-2	5	0	8	4.06	20	10	-173.8	-1	-1.00
16*	10	1	-2	3	0	8	7	-1	-10	6.91	10	6	-166.6	-1	-0.88
17	10	1	-2	3	-2	8	5	1	-10	3.53	17	10	161.2	+1	0.96
18	9	2	-2	11	-1	-14	0	-1	12	5.01	14	10	-159.6	-1	-0.92
19	1	1	0	11	0	-2	8	-1	-2	2.25	22	10	-156.3	-1	-0.33
20	9	2	-2	11	0	-2	0	-2	0	2.59	20	8	-152.8	-1	-0.99
21	11	0	-2	4	1	8	5	-1	-10	2.34	20	10	-151.8	-1	-0.92
22*	1	0	-12	10	1	-2	11	-1	-14	7.50	5	6	-149.1	-1	-0.95
23	6	2	-10	3	-2	8	11	0	-2	3.36	18	10	-147.2	-1	-0.95
24	5	0	-4	11	1	-14	4	-1	-10	5.26	19	10	146.3	+1	1.00
25*	10	1	-2	1	1	0	9	-2	-2	6.80	16		-145.8	-1	-1.00
26	6	0	-10	5	0	-4	7	0	10	5.78	20	8	140.2	$+1$	1.00
27	4	0	2	11	1	-14	5	-1	8	4.89	16	6	-138.3	-1	-1.00
28	5	0	-4	7	1	-10	0	-1	6	4.99	23	10	-133.2	-1	-0.93
29	10	0	-14	5	0	-10	7	0	-4	3.09	16	9	-133.1	-1	-1.00
30**	6	0	-10	-1	1	0	5	-1	-10	4.67	17	9	130.6	+1	1.00
31	9	0	-2	6	3	-9	5	-3	7	4.23	15	10	-130.4	-1	-1.00
32	6	1	-4	11	0	-2	3	-1	2	3.07	23	8	-129.6	-1	-0.94
33	0	1	12	11	0	-2	9	-1	-14	2.78	12	10	-125.8	-1	-0.95
34********	11	0	-14	7	1	-10	6	-1	-4	5.35	15	7	-122.5	-1	-0.92
$35^{* *}$	1	1	0	7	1	-10	6	-2	-10	4.99	16	9	-121.4	-1	-0.92
33^{*}	6	0	-10	10	1	-2		-1	8	6.31	10	6	-120.9	-1	-0.97
37	8	4	-7	11	0	-2	1	-4	5	3.26	11	10	-120.9	-1	-0.97
38	10	1	-2	7	-1	-10	5	0	8	3.55	20	10	120.8	+1	0.88
39**	10	1	-2	4	0	2	6	-1	-4	6.18	19	7	-120.7	-1	-1.00
40*	10	1	-2	10	0	-14	c	-1	12	6.30	7	6	-120.1	-1	-0.76
41	10	1	-2	4	-1	8	8	0	-10	2.76	20	10	119.6	+1	0.97
42	10	1	-2	3	0	8	1	-1	0	7.31	24	10	-119.3	-1	-0.83
43**	10	0	-14	1	1	0	11	-1	-14	6.27	5	8	-118.7	-1	-0.96
44*	5	0	-4	7	1	0	6	-1	-4	6.61	21	9	-117.9	-1	-0.88
45	9	0	-2	7	0	-11	4	0	9	2.84	20	10	-115.9	-1	-1.00
46	5	1	8	11	2	-2	4	-1	-10	3.28	17	10	-115.7	-1	-1.00
47	3	0	8	7	1	-10	8	-1	-2	2.71	22	10	115.2	+1	0.88
48	10	0	-14	0	1	12	8	-1	-2	2.67	15	10	110.7	$+1$	0.77
49	1	0	-12	11	1	-14	8	-1	-2	2.94	15	10	109.5	$+1$	0.95
50	5	0	-12	11	0	-2	4	0	8	2.44	20	7	-108.9	-1	-1.00
$5{ }^{\text {5 }}$	1	0	-12	1	1	0	c	-1	12	6.57	14	9	-108.0	-1	-0.99
52	4	0	2	6	1	-4	8	-1	-2	2.43	23	10	107.3	+1	1.00
53	1	1	0	11	0	-14	8	-1	10	4.59	17	6	-107.0	-1	-0.66
54	11	0	-14	3	2	8	4	-2	2	3.10	17	8	106.8	+1	1:00
55	6	0	-10	4	1	8	8	-1	-2	2.47	20	10	106.3	+1	0.97
56*	6	0	-10	9	0	-2	3	0	8	7.93	8	7	106.0	+1	1.00
57	11	0	-14	11	0	-2	2	0	-12	3.19	4	7	-104.1	-1	-1.00
58	9	0	-2	8	1	10	3	-1	-12	2.88	15	10	-104.1	-1	-0.95
59	9	0	-2	3	4	4	8	-4	-6	3.78	12	10	-103.8	-1	-1.00
60*	1	1	0	7	-1	-10	8	0	-10	3.17	17	9	102.1	+1	0.99

Table 1 (cont.)

Table 1 (cont.)

Seminvariant iriple															
Serial	h_{1}	,	l_{1}	n_{2}	k_{2}	l_{2}	${ }^{\text {H }}$	k_{3}	${ }_{3}$	A	No. of Quintets	$\begin{gathered} \text { No. of } \\ \text { Cross Terms } \end{gathered}$	Discr.	$\begin{gathered} \text { Calc } \\ \text { Cos } \end{gathered}$	True Cos
131	9	0	-2	3	2	8	8	-2	-10	2.43	19	10	-68.8	-1	-0.25
132	10	1	-2	11	0	-14	3	-1	-12	4.12	14	7	-68.7	-1	-0.83
133	6	0	-10	6	3	-9	2	-3	-1	4.73	16	10	-63.1	-1	-0.79
134	1	1	0	11	-1	-14	3	0	10	3.85	15	6	-68.0	-1	-0.96
135	5	0	-4	2	0	-12	5	0	8	2.43	20	10	-67.3	-1	-1.CC
136	1	0	-12	7	1	-10	14	-1	-6	3.28	9	7	-67.0	-1	-0.9?
137*	6	3	-9	4	0	2	10	- 3	-7	6.08	11	7	-66.8	-1	- 9.98
138	10	1	-2	6	-1	-4	14	0	-6	4.38	15	7	-66.8	-1	-1.0C
139	5	0	-4	3	0	8	4	0	2	7.51	26	10	66.6	+1	1.00
140	6	1	-4	6	-2	-10	8	1	10	3.26	17	7	-66.1	-1	-0.66
141	7	1	-10	4	0	-4	9	-1	-14	2. 35	19	10	65.5	41	0.86
142	10	1	-2	0	-1	12	2	0	6	5.18	20	8	65.3	4	0.76
143	9	0	-2	11	0	- ? 4	14	0	-6	4.61	15	7	65.2	$+1$	1.00
144*	6	0	-10	9	2	-2	3	-2	8	5.17	7	7	64.6	$+1$	0.97
145	10	1	-2	0	-1	12	8	0	10	4.18	12	7	-64.6	-1	-0.76
196*	10	1	-2	4	0	2	14	-1	0	3.60	11	7	-64.1	-1	-0.98
147	9	0	-2	11	0	-14	4	0	2	6.51	18	9	63.5	$+1$	1.00
148	1	0	-12	9	0	-2	4	0	-4	4.78	23	10	53.2	+1	1.00
149	6	0	-10	7	1	-10	5	-1	-10	4.42	19	7	63.2	+1	0.99
150*	11	0	-14	9	2	-2	2	-2	-12	5.52	5	6	62.4	$+1$	0.86
151**	10	1	-2	6	1	-4	4	-2	2	3.77	17	7	-62.4	-1	-0.96
152	4	0	2	7	1	- 10	9	-1	4	2.90	21	9	-62.2	-1	-0.93
153	10	0	-14	7	1	-10	11	-1	-14	5.92	16	7	-62.1	-1	-0.99
154	10	1	-2	2	-2	-12	0	1	6	4.55	20	9	-61.7	-1	-1.00
155*	3	0	8	9	2	-2	6	-2	-10	5.03	7	7	61.5	+1	1.00
156*	6	3	-9	1	1	0	5	-4	-9	4.16	10	9	-61.3	-1	-0.99
157	6	1	-4	3	-2	8	1	1	-12	2.92	19	10	60.7	$+1$	0.51
158	7	1	-10	6	1	-4	7	-2	10	2.89	17	7	-60.1	-1	-0.80
159	10	1	-2	7	-1	-10	11	0	-2	5.43	19	7	59.9	$+1$	0.88
160	9	0	-2	0	1	6	3	-1	-12	2.84	22	9	-59.8	-1	-0.76
161	1	1	0	11	0	-2	4	-1	8	3.83	23	10	59.7	+1	0.94
162	10	1	-2	0	-1	6	2	0	-12	3.11	22	9	-59.6	-1	-0.99
163	11	0	-14	2	2	-12	3	-2	8	4.69	12	7	59.5	+1	0.95
164	1	1	0	7	1	-10	0	-2	0	3.27	20	10	-59.2	-1	-0.80
165	5	0	-4	3	0	8	10	0	-8	4.89	21	9	59.1	41	1.00
166*	6	3	-9	1	-1	0	5	-2	-9	4.87	14	9	-58.4	-1	-0.96
167	3	0	3	11	0	-14	2	0	-12	4.06	15	7	58.1	$+1$	1.00
168	11	1	-14	5	1	8	4	-2	2	2.98	14	6	-57.8	-1	-0.94
159	6	0	-10	0	1	6	14	-1	0	2.71	20	7	-57.8	-1	-1.00
170	5	0	-4	7	1	-10	8	-1	10	5.06	19	6	-57.5	-1	-0.73
171	9	0	-2	2	2	-12	1	-2	-6	4.08	20	8	57.5	+1	0.77
172	5	0	-4	6	1	-4	5	-1	-10	4.04	23	10	57.5	+1	0.84
173	1	1	0	9	-2	-2	4	1	9	4.53	20	10	-57.3	-1	-0.97
174	7	1	11	6	-1	-4	7	0	-11	3.38	20	7	-57.2	-1	-0.94
175*	5	0	-4	0	1	12	5	-1	8	5.67	15	6	-57.0	-1	-0.96
176	1	0	-12	8	4	-7	9	-4	5	5.09	10	10	-56. 3	-1	-0.99
177	7	1	-10	3	-2	3	4	1	8	3.64	19	8	-55.7	-1	-0.93
178	10	1	-2	4	3	-9	4	-4	7	2.60	11	10	55.6	+1	0.78
179	5	0	-4	4	0	9	3	0	-13	2.54	20	10	-55.5	-1	-1.00
180	1	1	0	11	0	-19	6	-1	-4	5.66	22	9	-55.2	-1	-0.32
181	9	0	-2	0	2	5	11	-2	-7	2.25	20	10	-55.2	-1	-J.¢ ${ }^{\text {¢ }}$
182	1	1	0	11	-1	-14	4	0	-4	3.78	22	10	-55.1	-1	-0.96
183*	9	0	-2	7	0	10	2	0	-12	2.67	11	8	55.0	$+1$	1.00
184	10	1	-2	1	-1	0	5	0	-10	6.22	24	10	54.9	$+1$	0.83
185*	1	1	0	4	3	-9	5	-4	-9	3.02	10	9	54.9	+1	0.98
186	1	1	0	11	-1	-14	2	0	6	4.78	21	8	54.8	$+1$	0.76
187	7	1	-10	4	0	9	9	-1	-1	2.34	20	10	54.6	+1	0.60
188	3	2	-2	6	-2	- 10	5	0	8	2.58	18	10	-51.5	-1	-1.00
189	6	0	-10	2	Q	9	10	0	-1	2.45	20	10	-54.0	-1	-1.00
190	1	1	0	10	0	-8	3	-1	-12	2.53	22	8	-53.9	-1	-0.38
191	6	0	-10	3	1	2	9	-1	4	2.51	22	9	53.7	41	0.97
192*	1	1	0	5	2	-9	4	-3	-9	3.52	14	9	53.6	$+1$	0.98
193	10	1	-2	1	-2	-6	3	1	-12	3.00	19	7	-53.6	-1	-C. 22
194	5	0	-4	7	1	-10	6	-1	-4	6.25	23	9	-53.5	-1	-0.92
195	7	4	8	11	0	-2	2	-4	-10	2.22	8	8	-53.3	-1	-0.48
196	5	0	-4	9	1	-14	6	-1	-10	2.58	19	10	53.0	$+1$	0.21
197	1	0	-12	7	1	-10	0	-1	12	6.21	17	7	-52.9	-1	-0.38
193	10	1	-2	10	0	-14	8	-1	-8	4.31	15	6	52.8	+1	0.84
199	4	0	2	7	1	-10	9	-1	-8	3.14	22	10	52.4	+1	0.72 0.96
200*	1	1	0	5	0	-10	4	-1	-10	4.24	17	9	52.3	+1	0.96

large and negative the value of the special quintet Q_{j} is approximately 0 or π, respectively. Then, in view of (3.19) and (1.12), the T_{0} 's are correlated with the Δ 's in the sense that $T_{o} \simeq 0$ when Δ is large and positive and $T_{o} \simeq \pi$ when Δ is large and negative. Alternatively, cos $T_{0} \simeq+1$ or -1 according as $\Delta \gg 0$ or $\Delta \ll 0$, respectively.

4. The applications

Two applications of the procedure described in §3 have been made on known structures, the first to aldosterone monohydrate, $\mathrm{C}_{21} \mathrm{O}_{5} \mathrm{H}_{28} \cdot \mathrm{H}_{2} \mathrm{O}$, and the second
to valinomycin $\mathrm{C}_{54} \mathrm{H}_{90} \mathrm{~N}_{6} \mathrm{O}_{18}$, one molecule per asymmetric unit in both cases.

For aldosterone monohydrate the 221 phases corresponding to the (experimentally determined) $|E|$'s $>$ 1.5 were used to generate the 30000 three-phase structure seminvariants having the largest values of

$$
\begin{equation*}
A=\frac{2 \sigma_{3}}{\sigma_{2}^{3 / 2}} r_{1} r_{2} r_{3} \tag{4.1}
\end{equation*}
$$

The discriminants Δ (3.19) were calculated and arranged in decreasing order of $|\Delta|$. In Table 1 are shown the first 200 three-phase structure seminvariants T_{0} listed in decreasing order of $|\Delta|$ for the case

Table 2. Identity of 100 cosines of three-phase structure seminvariants calculated to be ± 1 employing (3.19) for valinomycin, $\mathrm{C}_{54} \mathrm{H}_{90} \mathrm{~N}_{6} \mathrm{O}_{18}$, space group P_{1}

Seminvariant Triple															
Serial	h_{1}	k_{1}	${ }^{1} 1$	h_{2}	k_{2}	${ }^{2} 2$	h_{3}	k_{3}	${ }^{2} 3$	A	No. of Quintets	No. of Cross Terms	Discr.	$\begin{aligned} & \text { Calc } \\ & \text { Cos } \end{aligned}$	True Cos
1	21	0	4	4	0	-7	7	0	-5	5.52	39	10			
2	21	0	4	2	0	-7	1	0	-5	3.67	38	8	-109.9 -100.5	-1	-1.00 -1.00
3	21	0	4	8	5	-10	5	-5	-12	4.16	19	6	80.4	$+1$	0.92
4	3	0	2	17	2	-9	4	-2	13	3.21	36	8	-77.8	-1	-1.00
5	21	0	4	12	5	-9	9	-5	-11	4.35	21	7	72.3	$+1$	1.00
6	3	0	2	2	0	-7	23	0	-3	5.39	40	9	-71.4	-1	-1.00
7	21	0	4	3	5	-12	0	-5	14	5.24	7	6	-70.7	-1	-0.97
8	3	0	2	2	1	14	19	-1	-10	4.18	33	7	-70.4	-1	-0.99
19	21	0	4	18	3	-9	21	-3	-7	3.94	22	6	- 65.5	+1	-1.00
10	8	1	11	3	0	2	13	-1	-7	3.33	39	9	-65.3	-1	-1.00
11	21	0	4	24	0	-5	27	0	-3	4.54	27	6	-65.0	-1	-1.00
12	3	0	2	18	3	-8	3	-3	12	3.19	36	7	-63.8	-1	-0.93
13	3	0	2	15	2	-8	6	-2	12	2.98	38	9	-61.9	-1	-0.99
14	21	0	4	2	0	-3	5	0	-1	5.41	42	8	-60.3	-1	-1.00
15	21	0	4	10	4	-10	7	-4	-12	4.17	23	6	-59.9	-1	-0.99
16	21	0	4	20	0	-9	17	0	-11	3.95	24	6	-57.9	-1	-1.00
17*********	3 5	5	-12	8	-5	-10	5	0	2	5.60	24	7	-57.6	-1	-1.00
18********	5	0	16	3	1	2	2	-1	14	5.56	9	7	-56.5	+1	-1.00
19 20	21 8	0	4	3	5	-11	6	-5	-9	3.11	21	6	56.1	$+1$	0.98
20 21	8 21	5	-10	13 10	-1	13 -10	11	-4	-1	3.10	25	7	54.7	+1	0.99
22	3	0	2	16	4	-9	5	-4	13	3.99 3.03	25 31	6	-54.3	-1	-1.00
23	21	0	4	17	4	-7	14	-4	-9	4.23	22	6	-52.2	-1	-1.00
24	21	0	4	17	3	0	14	-3	-2	3.43	27	6	-51.2	+1	-0.99
25	21	0	4	16	4	-9	19	-4	-7	3.78	19	6	-50.9	-1	-0.99
26	21	0	4	1	5	-11	2	-5	13	3.32	21	6	-50.7	-1	-0.77
27	21	0	4	9	4	-9	6	-4	-11	2.71	24	6	-50.7	-1	-1.00
28	21	0	4	13	1	13	10	-1	11	2.75	27	7	49.9	$+1$	0.98
29	21	0	4	14	4	-8	11	-4	-10	3.13	23	7	-49.1	-1	-1.00
30	21	0	4	12	5	-8	9	-5	-10	3.12	22	7	-46.4	$+1$	-1.00
31	3	0	2	5	0	-1	16	0	5	3.09	43	9	-43.5	-1	-1.00
32	21	0	4	10	5	-11	7	-5	-13	3.97	18	6	43.2	$+1$	-1.00
33	8	1	11	5	0	2	19	-1	-11	3.10	34	6	42.4	$+1$	-0.58
34*	8	1	11	5	0	2	13	-1	13	4.43	16	7	-41.8	-1	-0.91
35	17	2	-3	9	-7	1	2	5	14	3.21	18	6	-41.8	-1	-0.97
36*	3	5	-12	5	0	2	2	-5	14	3.97	17	7	40.7	$+1$	1.00
37	21	0	4	18	3	-7	15	-3	-9	3.50	22	6	40.3	$+1$	0.99
38	21	0	4	12	4	-10	15	-4	-8	3.11	21	7	-39.8	-1	-0.93
39	8	1	11	2	-5	14	16	4	1	2.63	22	7	-39.4	-1	-0.94
40	21	0	4	16	4	-9	13	-4	-11	3.47	15	6	-39.2	-1	-0.96
41	3	0	2	18	0	-12	3	0	16	2.63	20	6	-38.9	-1	-1.00
42	21	0	4	4	4	-12	1	-4	-14	2.73	15	6	- 38.6	-1	-1.00
43 44	21	0	4	4	5	-10	7	-5	-8	3.02	21	6	37.9	$+1$	0.95
44 45	21	0	2	8 14	0	14	13	-	-10 -11	2.69 3.31	35	8	- 37.6	-1	-1.00
45	21 8	1	4	14 8	4 -5	-9 -10	11	-4	-11 -3	3.31	22	7	-37.5	-1	-0.94
47	21	0	4	24	-1	--6	27	-1	-3	3.46 3.15	26	8	37.4	+1	0.95
48	3	5	-12	3	-1	-6 9	16	-4	-4	3.15 2.68	27 27	6 7	36.4 36.3	+1 +1	0.98 0.95
49	3	5	-12	9	-7	1	22	2	-7	4.09	19	7	36.3	+1	0.95 0.98
50	21	0	4	22	3	-3	19	-3	-5	2.89	24	6	35.3	$+1$	0.98

Table 2 (cont.)

				ari		Tripl									
Serial	h_{1}	${ }^{1} 1$	${ }^{\ell} 1$	h_{2}	k_{2}	${ }_{2}{ }_{2}$	h_{3}	k_{3}	ℓ_{3}	A	No. of Quintets	No. of Cross Terms	Ciscr.	$\begin{gathered} \text { Calc } \\ \text { Cos } \end{gathered}$	True Cos
51	21	0	4	12	0	-12	15	2	-12	3.13	16	7	-34.6	-1	-1.00
52*	5	0	2	9	4	-10	14	-4	-8	4.02	28	7	33.7	+1	0.73
53*	8	1	11	5	0	2	3	-1	9	3.70	30	7	-33.6	-1	-1.00
54	21	0	4	2	5	-11	1	-5	13	2.87	22	6	-33.4	-1	-0.85
55*	5	0	2	9	4	-10	4	-4	-12	3.87	28	7	32.1	+1	0.92
56	3	0	2	5	5	-12	2	-5	14	2.64	26	3	32.0	+1	0.93
57	8	1	11	11	4	-1	13	-5	-8	2.65	26	8	31.7	41	0.67
58	3	5	-12	13	-1	13	6	-4	-3	2.99	26	7	31.6	+1	0.99
59*	3	0	2	10	4	-10	7	-4	-12	3.74	28	7	29.9	+1	0.99
60*	3	0	2	10	4	-10	13	-4	-3	3.58	23	7	28.3	+1	1.00
61 *	21	0	4	2	1	14	19	-1	-10	4.66	11	6	23.0	$+1$	0.99
62	5	0	2	10	5	-11	1	-5	-11	3.63	28	8	-28.0	-1	-0.21
63	18	3	-9	14	4	-8	14	-7	3	3.10	17	7	-27.6	-1	-0.43
64	8	5	-10	17	2	-9	19	-7	5	2.63	15	6	27.3	+1	0.82
65	2	0	-3	5	0	-1	5	0	-2	3.47	47	10	-27.1	-1	-1.00
66	1	6	10	12	-7	3	3	1	9	3.91	20	7	-27.0	-1	-0.99
67	9	0	-15	5	0	2	4	0	-7	4.76	39	8	26.8	$+1$	1.00
68*	8	5	-10	5	0	2	13	-5	-8	3.08	24	7	-26.7	-1	-0.84
69	12	5	-9	9	-7	1	3	2	14	4.38	20	7	-25.8	-1	0.95
70*	3	5	-12	8	-1	11	11	-4	-1	4.83	18	6	25.1	$+1$	0.97
71	9	7	1	12	-5	-8	15	-2	-11	2.62	20	10	-24.1	-1	-1.00
72*	3	0	2	17	4	-7	14	-4	-9	3.79	28	7	23.7	$+1$	0.97
73	3	5	-12	14	-4	-8	1	-1	0	3.24	28	8	23.5	$+1$	0.70
74	9	4	-10	14	-7	3	13	3	-11	2.71	20	6	-23.2	-1	-0.90
75	9	7	1	14	-4	-8	13	-3	-11	2.96	20	7	-23.1	-1	-0.57
76	8	1	11	5	0	2	9	-1	-15	3.77	36	10	22.6	$+1$	0.77
77	9	0	-15	5	0	2	2	0	-7	4.55	39	8	-22.3	-1	-1.00
78	3	1	2	5	0	2	2	-1	14	4.68	40	6	-22.1	-1	-0.99
70	18	3	- 3	5	-7	8	5	4	-3	3.44	20	6	-22.0	-1	-0.97
\bigcirc	4	0	-7	7	0	-5	5	0	-2	3.54	45	10	-21.3	-1	-1.00
81*	3	1	2	12	3	-10	15	-4	-8	3.04	27	9	21.2	$+1$	0.89
82	5	0	16	3	5	-12	8	-5	-10	6.65	19	6	20.7	$+1$	1.00
83	10	7	10	14	-4	-8	14	-3	-2	2.98	19	6	-20.7	-1	-0.47
84*	3	0	2	16	4	-9	19	-4	-7	3.40	26	7	20.5	$+1$	0.99
85*	3	5	-12	3	0	2	0	-5	14	4.70	17	6	20.3	$+1$	0.97
86	5	0	2	12	4	-10	13	-4	-8	2.72	32	8	20.3	$+1$	0.93
87*	8	1	11	3	-1	2	5	0	9	3.41	28	9	-20.0	-1	-1.00
38*	21	0	4	8	1	11	13	-1	-7	3.72	15	6	19.8	+1	1.00
89*	3	1	2	6	-1	-7	9	0	-5	3.44	37	9	19.7	+1	0.91
90	18	3	-9	7	0	-5	17	-3	0	3.87	32	6	- 99.4	-1	-1.00
91*	3	1	2	12	-3	-10	15	2	-8	3.41	29	9	19.1	+1	0.97
92*	5	e	2	14	1	-12	19	-1	-10	3.84	26	7	-19.0	-1	-1.00
93*	5	0	2	17	2	- 3	22	-2	-7	3.55	20	7	19.0	$+1$	0.91
94*	8	1	11	8	5	-10	15	-6	1	3.00	12	6	18.6	+1	0.88
95	1	6	10	12	-7	3	19	1	-11	3.27	18	7	18.5	$+1$	-0.67
96*	3	0	2	16	4	-9	13	-4	-11	3.12	28	7	18.5	$+1$	0.96
97	5	0	2	17	4	-7	15	-4	-9	3.92	30	8	18.3	+1	0.99
98	3	0	2	12	5	-9	17	-5	-11	4.44	28	8	18.1	$+1$	0.70
99*	3	1	2	1.8	-3	-9	21	2	-7	3.49	25	9	18.1	+1	$1 . \mathrm{CO}$
100*	3	1	2	18	-3	-9	15	2	-11	3.45	26	9	-17.9	-1	-0.98

$n=1$. These identify those structure seminvariants approximately equal to 0 or π and give the most reliable estimates (± 1) for $\cos T_{0}$, column headed Calc. Cos. in Table 1.

For valinomycin the 496 phases corresponding to the (experimentally determined) $|E|$'s >1.727 were used to generate the 30000 three-phase structure seminvariants having the largest values of A (4.1). The discriminants Δ were calculated, arranged in decreasing order of $|\Delta|$, and the first 100 listed in Table 2 together with the corresponding seminvariants T_{0} and the estimates (± 1) for $\cos T_{0}$, column headed Calc. Cos. in Table 2.

In Tables 1 and 2 the columns headed No. of Quintets show the number of quintets Q_{j} in which the
three-phase seminvariants T_{j} were embedded, i.e. the number of extensions of the T_{j} 's actually used in the calculation.

Although calculations were made with the number of contributors n to the average in (3.19) equal to $1,2,3$, 4 and 5 , these all led to essentially the same Tables 1 and 2 with only minor changes in the order in which the seminvariants T_{0} appeared. Therefore Tables 1 and 2 show only the case that $n=1$, i.e. for each T_{0} only that extension having the maximum value of $r_{1} r_{2} r_{3} \mid\left(R_{j}^{2}-\right.$ 1) $\Delta_{K_{j}}$, was used in (3.19). The columns headed No. of Cross Terms show the number of cross-terms actually observed in the quintet having the maximum value of r_{1} $r_{2} r_{3}\left|\left(R_{j}^{2}-1\right) \Delta_{K}\right|$. Since the formulae for the quintet discriminants, (3.2), (3.7), (3.11) and (3.15) require the
presence of the full complement of ten cross-terms, the missing cross-terms, provided there were no more than four of them, were replaced by unity, the average value of $|E|^{2}$, a procedure not difficult to justify. (See, e.g. Heinerman, 1978, who appears to have been the first to make this observation for quartets; but see also Heinerman, Krabbendam \& Kroon, 1977.) In this way many more structure seminvariants T_{0} could be reliably estimated than would otherwise have been the case, as inspection of the columns headed No. of Cross Terms in Tables 1 and 2 shows.

The columns headed Discr. list the discriminants Δ (3.19) of the structure seminvariants T_{0} arranged in decreasing order of magnitude. Finally the columns headed Calc. Cos. and True Cos. show the calculated values (± 1) of $\cos T_{0}$, as found from the discriminant Δ, and the true values of $\cos T_{0}$, respectively.

The asterisks (${ }^{*}$) attached to some of the serial numbers in Columns 1 of Tables 1 and 2 identify those structure seminvariants T_{0} for which one of the $T_{j} \mathrm{~s}, j=$ $0,1,2,3$, happens to be a structure invariant. These cosine invariants would naturally be expected to have the value +1 , approximately, on the basis of the A values alone, which for the most part happen to be sufficiently large (i.e. >3) to justify this estimate. In all such cases (about 20% of the 200 listed in Table 1 and about 25% of the 100 listed in Table 2) the actually estimated values of the cosine seminvariants $\cos T_{0}$ are in accord with the estimate +1 of the corresponding cosine invariants.

By working through the entries in Table 1, i.e. solving the system of linear equations

$$
\varphi_{h_{1} k_{1} l_{1}}+\varphi_{h_{2} k_{2} l_{2}}+\varphi_{h_{3} k_{3} l_{3}}=0 \text { or } \pi,
$$

one may readily confirm that the aldosterone monohydrate structure is solvable via the estimated values of the three-phase structure seminvariants alone. More
specifically, Table 1 yields the values, with a twofold ambiguity, of 75 phases, which are expanded to 300 via the tangent formula. The negative quartet figure of merit, NQEST, (DeTitta, Edmonds, Langs \& Hauptman, 1975) is -0.457 and +0.721 for the two solution sets, so that a unique solution (corresponding to $\mathrm{NQEST}=-0.457$) is obtained. The initial E map shows 25 of the 27 nonhydrogen atoms. The interested reader may wish to use Table 2 in the same way to determine for himself the usefulness of the three-phase structure seminvariants alone in limiting the values of the individual phases for valinomycin.
Although the aldosterone monohydrate structure happens to be solvable via the three-phase structure seminvariants alone, it should be stressed that in the applications to more difficult structures one would naturally use the results described here to supplement, not replace, other methods and other relationships.

4.1. The errors

The average and weighted average of the magnitudes of the errors are given by

$$
\begin{equation*}
\langle | \text { Calc. Cos. - True Cos. }\rangle \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sum A \mid \text { Calc. Cos. }- \text { True Cos. } \mid}{\sum A} \tag{4.3}
\end{equation*}
$$

respectively. Summary tables of the average magnitude of the error are given for aldosterone monohydrate (Table 3) and valinomycin (Table 4) as functions of the discriminant for the 1000 structure seminvariants having the largest values of $|\Delta|$, arranged in descending order of the average value of $|\Delta|$ in groups defined by Columns 2 of these tables. In order to assess the effect of errors in the observed $|E|$'s the calculations were

Table 3. Average magnitude of the error in estimated values for the three-phase cosine seminvariants, $\cos T_{0}$, for aldosterone monohydrate using (a) exact values of the $|E|$'s as calculated from the refined structure and (b) experimentally determined $|E|$'s
(a) Using exact $|E|$'s

	Number of seminvariants in group	Avg. IDiscr.l	Avg. IError ।	Wt avg. IError ।
1	50	158.4	0.059	0.062
2	50	78.2	0.108	0.089
3	50	59.0	0.105	0.081
4	50	47.6	0.165	0.136
5	100	37.2	0.165	0.176
6	100	28.7	0.261	0.274
7	200	21.8	0.188	0.180
8	200	16.2	0.330	0.370
9	200	12.8	0.355	0.354
All groups	1000	33.9	0.239	0.233

(b) Using experimental $|E|$'s

Avg. IDiscr.	Avg. \|Error \mid	Wt avg. \|Error \mid
163.8	0.065	0.068
86.0	0.101	0.090
64.2	0.109	0.097
51.7	0.311	0.341
40.8	0.185	0.193
33.2	0.193	0.217
26.1	0.300	0.329
2.3	0.398	0.440
16.6	0.440	0.435
38.3	0.295	0.298

Table 4. Average magnitude of the error in estimated values of the three-phase cosine seminvariants, $\cos T_{0}$, for valinomycin using (a) exact values of the $|E|$'s as calculated from the refined structure and (b) experimentally determined $|E|$'s

Group	Number of seminvariants in group
1	50
2	50
3	50
4	50
5	100
6	100
7	200
8	200
9	200
All groups	1000

(a) Using exact $\|E\|$'s		
Avg. IDiscr.\|	Avg. IError\|	Wt avg. \mid Error \mid
25.6	0.136	0.126
11.9	0.059	0.054
9.3	0.148	0.144
7.6	0.322	0.322
6.1	0.200	0.197
4.9	0.396	0.427
3.7	0.352	0.375
2.7	0.529	0.549
2.1	0.673	0.686
5.5	0.404	0.410

(b) Using experimental $|E|$'s

| Avg.
 \|Discr.| | Avg.
 \|Error| | Wt avg.
 \|Error |
| ---: | :---: | :---: |
| 53.4 | 0.060 | 0.053 |
| 24.1 | 0.177 | 0.172 |
| 15.8 | 0.166 | 0.168 |
| 12.4 | 0.228 | 0.249 |
| 9.9 | 0.314 | 0.323 |
| 8.2 | 0.400 | 0.426 |
| 6.3 | 0.467 | 0.472 |
| 4.6 | 0.580 | 0.565 |
| 3.6 | 0.646 | 0.637 |
| 10.0 | 0.442 | 0.435 |

performed twice, once with experimentally determined $|E|$'s (as for Tables 1 and 2) and then with error-free $|E|$'s calculated from the refined structures. In the columns headed Avg. |Error| and Wt Avg. |Error| of Tables 3 and 4 are listed the values of (4.2) and (4.3), respectively, for aldosterone monohydrate and valinomycin for the groups defined by Columns 2. Also listed in these tables are the average values of $|\Delta|$ (columns headed Avg. IDiscr.I) for these groups. Although Table 1 gives estimates for only the first 200 seminvariants and Table 2 for the first 100 seminvariants, Tables 3 and 4 list the average magnitude of the error, in groups, for 1000 seminvariants as a function of the average values of $|\Delta|$. As expected, for each structure the errors tend to increase with decreasing $|\Delta|$, although they are still less than random even when $|\Delta|$ is as small as $3 \cdot 0$. The discriminants for valinomycin are smaller than those for aldosterone monohydrate, a consequence of the greater complexity of valinomycin. Inspection of Tables 3 and 4 shows that the errors are not a function of $|\boldsymbol{\Delta}|$ alone but appear to be structure dependent as well; for fixed $|\Delta|$ the errors are less for valinomycin than for aldosterone monohydrate. Comparison of the columns headed Avg. IErrorl and Wt Avg. IError| shows that the errors are independent of A, a result which is not surprising since A already enters into the definition of $\Delta\left[v i a\right.$ the product $\left.r_{1} r_{2} r_{3},(3.19)\right]$ on which the reliability of the estimate depends. Finally, comparison of Columns 4 and 7 (or 5 and 8) shows that, as expected, the errors tend to increase somewhat when experimentally determined $|E|$'s are used, but the increase is not great; in short the accuracy of the estimates is not overly sensitive to errors in the observed $|E|$'s. It should perhaps be pointed out in conclusion that the accuracy of the observed $|E|$'s as measured by the R factor,

$$
\begin{equation*}
R=\frac{\sum|E|_{\mathrm{obs}}-|E|_{\mathrm{true}} \mid}{\sum|E|_{\mathrm{obs}}} \tag{4.4}
\end{equation*}
$$

is $R=0.187$ for aldosterone monohydrate (2009 reflections) and $R=0.298$ for valinomycin (6189 reflections).

5. Concluding remarks

The probabilistic theory of the three-phase structure seminvariant T_{0} in $P 2_{1}$ has been initiated using the recently introduced extension concept. Employing the discriminant Δ, those seminvariants T_{0} whose values are probably 0 or π, approximately, are identified; according as $\Delta \gg 0$ or $\Delta \ll 0, T_{0} \simeq 0$ or π, respectively. In this work only a suitable 14 -magnitude subset of the complete second neighborhood of T_{0} has been used. The ability to make use of the full 41-magnitude second neighborhood of T_{0} would presumably lead to more reliable estimates of the structure seminvariants in general, but this work still remains to be done.

This work was supported in part by Grant No. CHE76-17582 from the National Science Foundation and RR-05716 from the Division of Research Resources, DHEW.

References

DeTitta, G., Edmonds, J., Langs, D. \& Hauptman, H. (1975). Acta Cryst. A31, 472-479.

Fortier, S. \& Hauptman, H. (1977a). Acta Cryst. A33, 572-575.
Fortier, S. \& Hauptman, H. (1977b). Acta Cryst. A33, 829-833.
Giacovazzo, C. (1977). Acta Cryst. A33, 933-944.
Hauptman, H. (1975a). Acta Cryst. A31, 671-679.
Hauptman, H. (1975b). Acta Cryst. A31, 680-687.
Hauptman, H. (1977). Acta Cryst. A 33, 568-571.
Hauptman, H. (1978). Acta Cryst. A34, 525-528.

Hauptman, H. \& Fortier, S. (1977). Acta Cryst. A33, 575-580.
Heinerman, J. J. L. (1978). Proceedings of the International Symposium on Direct Methods in Crystallography, Buffalo, New York, edited by H. Hauptman, pp. 177197.

Heinerman, J. J. L., Krabbendam, H. \& Kroon, J. (1977). Acta Cryst. A33, 873-878.

Putten, N. van der \& Schenk, H. (1977). Acta Cryst. A33, 856-858.
Schenk, H. (1975). Acta Cryst. A 31, S 14.

Application of Quartet and Quintet Invariants in Phase Determination

By Niek van der Putten and Henk Schenk
Laboratory for Crystallography, University of Amsterdam, Nieuwe Achtergracht 166, Amsterdam, The Netherlands

(Received 2 October 1978; accepted 9 November 1978)

Abstract

Recent derivations of probability expressions for quartet and quintet structure invariants allow the reliable estimation of the phase sums of quartets and quintets in the range 0 to π. A new quartet figure of merit, ENQUAC and a new quintet figure of merit, ENQUIC, based on these estimates are described, which are particularly useful in non-centrosymmetric symmorphic and polar space groups. An adapted tangent-refinement procedure employing selected triplets with a phase sum of 0 , together with the quartet and quintet phase estimates, enables enantiomorphspecific phase refinement. The way in which the figures of merit and the refinement technique can be used in various practical procedures is demonstrated and applications to two structures in space group $P 1$ are presented.

Introduction

Although more and more structures of moderate complexity (60 to 80 independent atoms) are solved by direct methods, in non-centrosymmetric symmorphic and polar space groups, the application of the triplet relation fails for numerous structures: parts of the phase determination, which are easy to carry out in other space groups, give rise to serious problems, such as:
(i) The enantiomorph definition; in the space groups $P 1, P 2, P 2_{1}, C 2$ and $C c$ it is a difficult procedure, because it is not possible to select a starting reflection, which is enantiomorph-sensitive ($\Phi \simeq \pm \pi / 2$).
(ii) The tangent refinement; occasionally the resulting phases are centrosymmetric, even starting with a correct phase set.

0567-7394/79/030381-07\$01.00
(iii) The various figures of merit, based on triplets; they do not discriminate as consistently between correct and incorrect phase sets as they do in nonsymmorphic and non-polar space groups. Some of these difficulties have been dealt with by Schenk (1972), who indicated that they can be ascribed to the influence of the space group symmetry and the properties of the \sum_{2} relation.

These problems do not exist if the actual values of the phase sums,

$$
\begin{equation*}
\Phi_{3}=\Phi_{H}+\Phi_{K}+\Phi_{-H-K}, \tag{1}
\end{equation*}
$$

could be used instead of assuming all Φ_{3} to be zero. Of course the Φ_{3} values cannot be evaluated from $|E|$ magnitudes alone, and in practice only $\left|\Phi_{3}\right|$ values can be calculated, of which the quality is not yet sufficiently good to define reliable enantiomorph-specific procedures (e.g. $B_{3,0}$ formula, Karle \& Hauptman, 1958; TPROD formula, Hauptman, Fischer, Hancock \& Norton, 1969; MDKS formula, Fischer, Hancock \& Hauptman, 1970; and the strengthened triplet formula, Giacovazzo, 1977).

Test results of recent expressions for quartets and quintets proved that the absolute values $\left|\Phi_{4}\right|$ and $\left|\Phi_{5}\right|$ of their phase sums,

$$
\begin{equation*}
\Phi_{4}=\Phi_{H}+\Phi_{K}+\Phi_{L}+\Phi_{-H-K-L} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{5}=\Phi_{H}+\Phi_{K}+\Phi_{L}+\Phi_{M}+\Phi_{-H-K-L-M} \tag{3}
\end{equation*}
$$

can be estimated with the required accuracy for enantiomorph-specific procedures. Most of these results are described in papers by Hauptman (1975), van der Putten \& Schenk (1976), Schenk \& van der Putten (1977), van der Putten \& Schenk (1977) and Gilmore (1977). More evidence will be given in this paper.

The main problem left when applying estimated phase sums in structure determination arises from the © 1979 International Union of Crystallography

