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Abstract

By embedding the three-phase structure seminvariant
T, and its symmetry-related variants T, T, and T; in
suitable quintets Q,, Q,, @, and @, respectively, one
obtains the extensions Q, of the seminvariants T
Owing to the space-group dependent relationships
among the phases, the value of T is simply related to
the values of the Q,’s. Thus the probabilistic theory of
the seminvariant T} is reduced to that of quintets, which
is well developed. In particular the discriminant 4 of T,
is defined in terms of the discriminant of the quintet,
and extreme values of 4 are correlated with extreme
values of T in the sense that T, ~ 0 or 7 according as
4 > 0 or 4 <0, respectively. Applications to two real
structures in P2, are described which show the
usefulness of these results in the solution of crystal
structures.

1. Introduction

Our major goal is to present a formula, (3.19), which
will be useful in the identification and estimation of
those three-phase structure seminvariants in P2, having
the extreme values O or 7. In order not to distract or
confuse the reader interested in making the appli-
cations, no details of the derivations are presented.
Instead, only a few introductory paragraphs are given
connecting this paper with the earlier work on
extensions and relating the present work to the
probabilistic theory of quintets (via the neighborhood
concept), in particular the quintet discriminant. The
remainder of the paper is devoted simply to a
description of the major result, equation (3.19), and to
applications of (3.19) to two structures in P2,. These
applications show the usefulness of the three-phase
structure seminvariants in the determination of crystal
structures.
Suppose that

Ty=0n 41+ Phskot, + Pk, (L.
is a structure seminvariant in P2,. Then
(h k1) + (hyky 1) + (hy ks 15) = 0 mod(202),
(1.2)
0567-7394/79/030371-11801.00

ie. hy+h, + hyand !, + [, + I, are even integers and
k,+ky+ky;=0. (1.3)

By embedding 7, and its three symmetry related
variants,

Tl = (pix,kli, + Phokyt, (ph,k,l,’ (1-4)

Tz = (phxklll + (pilzkziz + (p":k:ls’ (15)
and

T3 = ¢h1k111 + (phzkzlz + (oi_l;kai:’ (16)

in suitable quintets (five-phase structure invariants), Q,,
Q.. 0,, and Q,, respectively, one obtains the extensions
Q;of T;,j =0, 1, 2, 3, (Hauptman, 1978; but see also
Giacovazzo, 1977, for a similar concept). If one defines
integers H;and L;,j =0, 1, 2, 3, by means of

Hy=4h +h,+h;), Ly=3U,+1L+1), (1.7)
H =4—h,+hy+hy), Li=3(-1,+1L+1), (1.8)
Hy=%h —h,+ h)), L,=41,—1+1), (1.9)
Hy=¥h +h,—hy), L,=31U+1-1), (1.10)
then the extensions Q, of 7, are defined by

Q=T+ Vg,i,* Paii, (1.11)

where the four (positive) integers K;,j =0, 1, 2, 3, are
arbitrary. Then the Q; are five-phase structure in-
variants (quintets). It then follows from the space-group
dependent relationships among the phases (Hauptman,
1978) that

Ty=Q;+ al}—4cos nlk; + K, j=0,1,2,3,(1.12)
provided that k, is defined by
ky=0. (1.13)

In this way the probabilistic theory of the three-phase
structure seminvariant 7, is reduced to the proba-
bilistic theory of quintets, which is well developed. In
particular, for fixed positive integers K, j =0, 1, 2, 3,
the second neighborhood of T, consists of the set-
theoretic union of the second neighborhoods of the four
extensions Q;, j = 0, 1, 2, 3, i.e. 41 magnitudes |EI
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in all. Since the four integers K;,j =0, 1, 2, 3, are arbi-
trary, there are many second neighborhoods, one for
each set of four positive integers K.

It should perhaps be stressed that the extension
concept enables one merely to identify the
neighborhoods of the structure seminvariants. There
remains the more time consuming task of deriving the
conditional probability distribution of the semin-
variant, given the magnitudes in any of its
neighborhoods, using a mathematical formalism pre-
viously described (e.g. Hauptman, 1975a,b; Fortier &
Hauptman, 1977q; Hauptman & Fortier, 1977; van
der Putten & Schenk, 1977). However, the problem of
deriving distributions sufficiently accurate to be useful
in the applications appears to be quite difficult in
general and has been solved only in a few cases so far.

2. The second neighborhoods

In view of earlier work on quintets (Schenk, 1975;
Hauptman, 1977), the second neighborhood of the
special quintet Q, (1.11) is known to consist of fourteen
magnitudes | E'l, the four distinct ‘main terms’

IEhlklllI, IEhzkzlzl, IEM’,’I, IEHOKOLOI,
and the ten ‘cross-terms’
|E

2.1)

h1+hyk3»11+12|’ lEhz+h3.k1,lz+1:!’ lEh3+h1-kz:13+lll’

lEg kiikor s 'Erykgrror,s 'Enykstkor,)s
lE2H,,,|), zz,,,’, (22)

where K, is an arbitrary positive integer. In a similar
way the fourteen-magnitude second neighborhoods of
Ql, Q, and Q, are found. However only 41 of the 14 x

= 56 magnitudes constituting the four second
nelghborhoods of Q, Q,, @, and Q, turn out to be
distinct. Thus the second neighborhood of T, is found
to consist of the 41 magnitudes:

ri=1Epss)s i=1,2,35 (2.3)

Ri=1Ey .} j=0,1,2,3; (2.4)

ra=1Ey inykpt,40,s Tis= LBy ky1-1, (2.5)
3= By pn ke T3 = VEy ko1, (2.6)
ran=1Ey ih i1y 1= VEy _h, ko ty=1,1 (2.7)
Ro;=1Esq, 0,21, j=0,1,2,3; (2.8)
Rio=1Ey tirorl Ris=1Eq i xonls (29
Ry= lEHz,kz+K0,L2|’ Ryp= |EH2 k=Ko L3 (2.10)
Ry=IEy roxyr)s  Ryg=1Ey i xorl,  (2.11)
Ry=1Eq i kors Rii=1Eg s s (2.12)
Ry=1Ey ixor)s Ru=1Ey g0l (213
R3, |E,,2,,(3+K L Ryi=1Eg . ol (214)
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Ry, = 'Ey kikorh Ria=1Ey 4 x5 (2.15)
Ry, = |EH0 Ky+K Lo Ry = IEHO kK oLyl (2.16)
Ry=1Ey xix,)s Ryi=1Ey k.13 (2.17)
Riy=1Ey x+x,1,)s Ri3=1Eq x k1,55 (2.18)
Ryy=1Ey 1k, Ris=1Ey 4 k1,53 (2.19)
Ry =1Eq i ixorh Ris=1Ey x k.1, (2.20)

The logical next step would be to derive the
conditional probability distribution of T, given the 41
magnitudes in its second neighborhood, using techni-
ques previously described (e.g. Hauptman & Fortier,
1977). However, owing to the enormity of this task, this
attempt has not yet been made. Instead, a more modest
goal was set. It was decided to derive the exponential
form of the conditional probability distribution of each
quintet Q; (a relatively easy task), given the 14 magni-
tudes in its second neighborhood, in effect the discrimi-
nant of the quintet (Hauptman & Fortier, 1977; Fortier
& Hauptman, 1977b). It is already known from this
earlier work that extreme values of the discriminant,
whether large and positive or large and negative, are
well correlated with the extreme values, O or 7 respec-
tively, of the quintet. Thus, by employing only those
extensions @, the magnitudes of whose discriminants
are extremely large, one identifies, via (1.12), those
structure seminvariants T, having the extreme values 0
or m, approximately. In view of the earlier work on the
discriminant, only the final results are briefly sum-
marized in the sequel.

3. The discriminant of T

The discriminant of the three-phase structure semin-
variant 7 is defined in terms of the discriminants of the
extensions Q;of T,,j =0, 1, 2, 3.

3.1. The discriminant of the quintet Q,
For each value of
Ky=1,2,3,..., (3.1)
one calculates the discriminant of the quintet Q, by
means of

2 [ K \ K,
4y = —029’2 o3 12; — 0530} —0,0,)Y

10
+ (1563 — 100, 0, 6, + 03 05)] , (3.2)
where

KO
_ 2 2 2
2=ri i+
10
2 2 2 2
+R00+R,O+R0+R0+R0+R30+R,(—,,

(3.3)
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K,
_ 2 (R2 R
2 =ri(R3 + R, + R35) + r3(R3, + R3, + R%)
15
2 (R2 R _ _
+ r3 (RS + Ry + R3) + (R}, R + R, R3;

+ R} R}) + (R5 R} + R}5 R} + R3GRY),
3.9

N
a,=> f1 3.5)
Jj=1
J; is the zero-angle atomic scattering factor of the atom
labeled j, and N is the number of atoms in the whole unit
cell. In the X-ray diffraction case the f; are equal to the
atomic numbers Z; and are therefore all positive; in the
neutron diffraction case some of the f; may be negative.

3.2. The discriminant of the quintet Q,

For each value of
K, =1213,..,

one calculates the discriminant of Q, by means of

(3.6)

K

2 1 Kl
t,= =5 033~ 0303 - 000>
g3 15 10

+ (150} — 100, 05 0, + 03 0))|,  (3.7)

where

K,

2., 2 2. 2 2 2. 2
2 =riz+r;+rii+ R + R} + Rip + R,
10

+ R% +R%, + RY; (3.8)

and

Kl
> =ri(RE, + R}, + R3;) + ris(R3, + R}, + RY)
15

+r3(R2, + R%, + RY)

+ (R}, R} + R}, R} + R}, R}

+ (R} R}, + Ry R, + R RY). (3.9
3.3. The discriminant of the quintet Q,
For each value of
K,=1,23,.., (3.10)

one calculates the discriminant of Q, by means of

2 K, K,
4y, =~ [ag > — 04362 —0,0) %

2 15
+ (1503 — 100, 0, 0, + 0% 05)],(3.11)
where
KZ
S=riz+ri+ 15+ R, + Rl + Riz+ R,
10

+ R% + R%, + RY; 3.12)
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and

K,

2. =rii(R%, + R}, + R} + r3(RE, + R}, + RY)
15

+r}(R}, + R}, + RY)

+ (R} R3; + R, R + RL, RY)

+ (R R}, + R R, + R RY. (3.13)
3.4. The discriminant of the quintet Q,
For each value of
K;=123,.., (3.14)

one calculates the discriminant of @, by means of

2 [,% 2 et
i, = Py 032 — 0,305 —0,0) 3
2 15 10

+ (1563 — 100, 0, 0, + G2 05)], (3.15)

where
S 2 2 2 2
_ - _ 2 2
2=rip+ri+ i +R5 + R + R + R,
10
+R% + R, + R%; (3.16)
and
K;

2 =r1(R§; + R}; + RY;) + ri5(R3; + R3; + RY)
15

+ rji(R3; + R3; + R}3)

+(R}; R35 + R3; Ri; + RL; RY)

+ (Ri3 R} + R33 R}, + R RY). @3.17)

3.5. The discriminant of the structure seminvariant T,

For each fixed structure seminvariant T, arrange the
collection

rirr(RE— 1D dg, rirry(RI—1)4,,
rirars(R3— D4y, rinr(Ri—1) 4,
K;=1,2,3,...; j=0,1,2,3, (3.18)

in decreasing order of magnitude and select the largest
n of them where n is some small number, e.g. n =1, 2,
3, 4 or 5. Using these n numbers construct, in view of
(1.12), the ‘discriminant’ of T,

A= ryr,ry(R} — 1) 4 cos n(k; + K)) )5 (3.19)

where the average is taken over the n K/s corres-
ponding to the n largest values of

lryryry(R?—1) AKJI,
K;=123,.., j=0,1,2,3,
and, by definition,

(3.20)

ko =0. (3.21
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If n = 1 then only one term contributes to (3.19), that  average in (3.19); however, as described in the sequel,
one of (3.18) whose magnitude is largest. In this way the initial applications suggest that only the case n = 1
one obtains a discriminant 4 for each structure semin- is needed].

variant T, [in actuality several discriminants, one for Arrange the 41’s in decreasing order. Recall that
each value of n, the number of contributors to the according as r, r, ry(R? — 1) Ax, is large and positive or

Table 1. Identity of 200 cosines of three-phase structure seminvariants calculated to be +1 employing (3.19) for
aldosterone monohydrate, C,,H,;0,.H,0, space group P2,

Seminvariant Triple
No. of No. of Calc True

serial M K 41 M kg g hy k3 gy A Quintets  Cross Terms  Discr.  Cos Cos
1 1 0 -12 10 0 -14 1N 0 -2 6.5 7 7 -418.3 -1.00
2 6 0-10 3 0 8 11 0 -2 618 20 1c -389.0 -1 -1.00
3 9 0 -2 7 1 -0 &4 -1 8 46 20 10 -323.3 -1 -0.97
& 10 1 -2 9 0 -2 1 -1 o0 7.39 17 9 23194 ) -0.83
5 9 0 -2 M 1 14 0 -1 12 5.5 12 10 -300.3 -1 -0.93
6 5 0 -4 4 0 2 M 0 -2 5.9 23 10 2251.0 -1 -1.00
7 v 1 -2 3 0 8 5 -1 -10 4.47 20 10 2386 4 0.79
g 6 0 -0 1 1 0 7 -1 -10 7.23 17 9 -225.0 -1 -0.99
9* 10 1 -2 11 0 N 0 -2 5.7 17 9 1.5 4 0.83
0° 1 0 12 10 1 -2 9 -1 -4 4.92 n 10 207.3 4 9.52
n 9 0 -2 4 0 2 1 0 -2 3.2 25 10 22035 -1 -1.00
12 5 0 -4 10 1 -2 3 -1 2 5.74 23 10 197.7  + 0.9
13 7 1 210 9 -2 -2 &4 1 8 429 17 10 186,41 -0.99
14 9 0 -2 3 0 8 8 0 -10 3.47 21 10 81,0 -1 -1.00
15 6 0 -0 9 0 -2 5 0 B8 4.06 20 10 21738 A1 -1.00
6* 10 1 -2 3 0 8 7 -1 -10 6.9 10 6 66,6 -1 -0.88
17 0 1 -2 3 -2 8 5 1 -10 3.5 17 10 161.2 0.96
18 9 2 -2 M -1 4 0 -1 12 5.0 14 10 21596 -1 -0.92
19 11 0 M 0 -2 8 -1 -2 2.28 22 10 -156.3 -1 -0.83
20 9 2 -2 N 0 -2 0 -2 0 2.59 20 8 2152.8 -1 -0.99
21 M 0 -2 4 1 8 5 -1 -0 2.3 20 10 A151.8 -1 -0.92
22+ 1 0 -12 10 1 -2 N -1 -14 7.5 5 6 214901 A -0.95
23 6 2 -10 3 -2 8 N 0 -2 3.3 18 10 a7 -0.95
28 5§ 0 -4 1 1 -14 4 -1 -10 5.26 19 10 146.3 4 1.00
25* 1001 -2 1 1 0 9 -2 -2 6.8 16 9 -145.8 -1 -1.00
26 6 0 -0 5 0 -4 7 0 10 5.8 20 8 40,2 4 1.00
27 4 0 2 M 1 4 5 1 8 489 16 6 21383 -1 -1.00
28 % 0 -4 7 1 -0 0 -1 6 4.9 23 10 332 A -0.93
29 0 0 -14 5 0 -0 7 0 -4 3.09 16 9 21331 A -1.00
30* 6 0 -10 <1 T 0 5 -1 -10 4.67 17 9 1306 4 1.00
N 9 0 -2 6 3 -9 5 -3 7 4.23 15 10 21304 1 -1.00
32 6 1 -4 M ¢ -2 3 2 307 23 8 21296 -1 -0.94
33 01 12 M 0 -2 9 -1 14 2.78 12 10 A125.8 -1 -0.95
34 M 0 -1 7 1 -0 6 -1 -4 5.35 15 7 1225 -0.92
35* 1 1 0 7 1 -0 6 -2 -10 4.99 16 9 a2 A -0.92
36* 6 0 -10 10 1 -2 4 -1 8 6.3 10 6 212009 -1 -0.97
37 8 4 -7 M 0 -2 1 -4 5 3.2 n 10 22009 A -2.97
38 10 1 -2 7 -1 -0 5 0 8 3.5 20 10 120.8 4 0.88
3* 10 1 -2 4 0 2 6 -1 -4 6.8 19 7 2007 A -1.00
* 10 1 -2 10 0 -14 ¢ -1 12 6.8 7 6 212001 A -0.76
a 0/ 1 -2 4 -1 8 8 0 -10 2.76 20 10 M9.6 0.97
a2 ° 1 -2 3 0 8 1 -1 o0 7.3 24 10 M9z A -0.83
3* 10 0 <14 1 1 0 N -1 -14 6.2 5 8 8.7 a1 -0.9
pre 5§ 0 -4 1 1 0 6 -1 -4 6.6 21 9 M7 A -0.88
as $ 0 -2 7 0 -n a4 0 9 2.8 20 10 5.9 A -1.00
a6 5 1 8 1 9 -2 4 -1 -0 3.28 17 10 5.7 -1 -1.00
a7 30 8 7 1 -0 8 -1 -2 2.7 22 10 ns.2  # 0.88
48 M/ 0 -4 0 1 12 8 -1 -2 2.67 15 10 0.7 % 0.77
a9 1 012 N 1 -84 8 - -2 2.9 15 10 109.5 4 0.95
50 5 0-1¢ M 0 -2 4 0 8 244 20 7 -108.9 -1 -1.00
51* 1 012 1 1 0 ¢ -1 12 6587 14 9 -108.0 -1 -0.99
52 4 0 2 6 1 -4 B -1 -2 2.43 23 10 107.3  # 1.00
53 1 1 0 M 0 14 8§ -1 10 4.59 17 6 207,00 -0.66
54 M 0 -4 3 2 8 4 -2 2 310 17 8 106.8 4 100
55 6 0 -19 4 1 8 8 -1 -2 2.47 20 10 06.3  + 0.97
56+ 6 0 -10 9 0 -2 3 0 8 7.93 8 7 06.0  + 1.00
57 N 014 N 0 -2 2 0 -12 319 4 7 <1041 a -1.00
58 9 0 -2 8 1 10 3 -1 -12 2.8 15 10 21041 R -0.95
59 9 0 -2 3 4 4 8 -4 -6 378 12 10 -103.8 A -1.00
60+ 1 1 ¢ 7 a9 - 8 0 -10 3.7 17 9 102.1 R 0.99
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n.o
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+1
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+1
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-1
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large and negative the value of the special quintet Q; is
approximately O or 7, respectively. Then, in view of
(3.19) and (1.12), the T,’s are correlated with the 4’s in
the sense that 7, ~ 0 when 4 is large and positive and
T, ~ n when 4 is large and negative. Alternatively, cos
T, +1 or —1 according as 4 > 0 or 4 < 0,
respectively.

~

4. The applications

Two applications of the procedure described in § 3
have been made on known structures, the first to aldo-
sterone monohydrate, C,,O,H,;. H,0, and the second
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to valinomycin C,,H,,N,O,4, one molecule per asym-
metric unit in both cases.

For aldosterone monohydrate the 221 phases cor-
responding to the (experimentally determined) |El’s >
1.5 were used to generate the 30 000 three-phase struc-
ture seminvariants having the largest values of

20,
=—F
O-g/ 2

1P Ty 4.1)
The discriminants 4 (3.19) were calculated and
arranged in decreasing order of i4l. In Table 1 are
shown the first 200 three-phase structure semin-
variants T, listed in decreasing order of 14! for the case

Table 2. Identity of 100 cosines of three-phase structure seminvariants calculated to be +1 employing (3.19) for
valinomycin, Cs,HggNO 4, space group P2,

Seminvariant Triple

serial M Ky oy My kg, hy kg gy
) 22 0 4 4 0 -7 71 0 -
2 2 0 4 2 0 -7 1 0 9
3 22 0 4 8 5 .10 5 -5 .12
a 3.0 2 17 2 -9 a4 -2 13
5 20 4 12 5 -3 9 .5 N
6 3.0 2 2 0 -7 23 o0 -3
7 2 0 4 3 5 92 0 -5 1a
8 3.0 2 2 1 14 19 1 -10
9 2 0 4 18 3 -9 21 -3 -7
10 g8 1 N 3.0 2 13 91 -7
n 21 0 4 28 0 -5 27 0 -3
12 30 2 18 3 -8 3 .3 12
13 30 2 15 2 -8 6 -2 12
14 2 0 4 2 0 -3 5 o0
15 21 0 4 10 4 -0 7 -4 -12
16 21 0 4 20 0 -9 17 o0 -
17+ 3 5 12 8 -5 -10 5 0 2
18% 5 0 16 3 1 2 2 1 14
19 21 0 4 3 5 .1 6§ -5 -9
20 8 5 <10 13 -1 13 M -4 -
21 2 0 4 10 4 -10 13 -4 -8
22 30 2 16 4 -9 5 -4 13
23 21 0 4 17 4 -7 14 -4 -9
24 20 0 4 17 3 0 14 -3 -2
25 21 0 4 16 4 -9 19 -3 -7
26 20 4 1 5 .11 2 -5 13
27 21 0 4 9 4 -9 § -2 -n
28 20 4 13 1 13 10 -1 N
29 21 0 4 14 4 -8 11 -4 -0
30 21 0 4 12 5 -8 9 -5 -10
3 30 2 5 0 -1 16 0 5
32 20 4 10 5 -1 7 -5 -13
33 g8 1 N 5 0 2 19 -1 -n
34+ 8 1 M S 0 2 13 -1 13
35 17 2 -3 9 -1 1 2 5 12
36+ 35 02 5 0 2 2 -5 14
37 20 4 18 3 -7 1§ -3 .9
38 21 0 4 12 4 -10 15 -2 -8
39 8 1 M 2 -5 14 16 4
40 21 0 4 16 & -9 13 -4 -1
a 3 0 2 18 0 -12 3 0 16
a2 2 0 4 4 4 12 1 -4 -4
43 21 0 4 4 5 -0 7 -5 -8
a4 30 2 8 0 14 13 0 -10
as 21 0 4 14 4 -9 1 -4 -1
a6 8 1 11 8 -5 -10 6 4 -3
47 21 0 4 28 1 - 27 -1 -a
48 3 05 212 3 -1 9 16 -4
49 3 5 12 9 -7 1 22 2 -7
50 21 0 4 22 3 -3 19 -3 -5

mewwwl\)wl\)mwr\iwwu‘uauuwwwl\)Nuuwauwwwwmubmmwbwwbmmhwhww

Calc True
No. of No. of .

A Quintets Cross Terms Discr. Cos Cos
.52 39 10 -109.9 -1 -1.00
.67 38 8 -100.5 -1 -1.90
.16 19 6 80.4 +] 0.92
.21 36 8 -77.8 -1 -1.00
35 21 7 72.3 +1 1.00
.39 40 9 -71.4 -1 -1.00
.28 7 6 -70.7 -1 -0.97
.18 33 7 -70.4 -1 -0.99
.94 22 6 65.5 +1 1.00
.33 39 9 -65.3 -1 -1.00
.54 27 6 -65.0 -1 -1.00
19 36 7 -63.8 -1 -0.93
.98 38 9 -61.9 -1 -0.99
A 42 8 -60.3 -1 -1.00
7 23 6 -59.9 -1 -0.99
.95 24 6 -57.9 -1 -1.00
60 24 7 -57.6 -1 -1.00
.56 9 7 56.5 +1 0.99
N 21 6 56.1 +1 0.98
.10 25 7 54.7 +1 0.99
.99 25 7 -54.3 -1 -1.00
.03 31 6 -54.1 -1 -1.00
.23 22 6 -52.2 -1 -0.99
.43 27 6 51.2 +1 0.99
.78 19 6 -50.9 -1 -0.99
.32 21 6 -50.7 -1 -0.77
a 24 6 -50.7 -1 -1.00
.75 27 7 49.9 +1 0.98
A3 23 7 -49.1 -1 -1.00
12 22 7 46.4 +1 0.69
.09 43 9 -43.5 -1 -1.00
.97 18 6 43.2 +1 1.00
.10 34 6 42.4 +1 -0.58
.43 16 7 -41.8 -1 -0.91
21 18 6 -41.8 -1 -0.97
.97 17 7 40.7 +1 1.00
50 22 6 40.3 +1 0.99
1 21 7 -39.8 -1 -0.93
.63 22 7 -39.4 -1 -0.94
.47 15 6 -39.2 -1 -0.96
.63 29 6 -38.9 -1 -1.00
.73 15 6 -38.6 -1 -1.00
.02 21 6 37.9 +1 0.95
.69 35 8 -37.6 -1 -1.00
31 22 7 -37.5 -1 -0.94
46 26 8 37.4 +1 0.95
15 27 6 36.4 +1 0.398
.68 27 7 36.3 +1 0.95
.09 19 7 35.3 +1 0.98
.89 24 6 35.3 +1 0.98
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Table 2 (cont.)

Seminvariant Triple
serial MoKy h Ry Ky B hy kg iy
51 210 4 12 0 12 15 2 -12
52+ 5 0 2 9 4 -10 14 -4 -8
53+ g8 1 1N 5 0 2 3 -1 9
54 A 0 4 2 5 -1 1 5 13
55+ 5 0 2 9 4 10 4 -4 -12
56 3 0 2 5 5 12 2 -5 14
57 8 1 M M 4 - 13 -5 -8
58 3 5 12 13 -1 13 6 -4 -3
59+ 3 0 2 10 &4 -0 7 -4 2
60+ 3 0 2 10 4 -10 13 -4 -8
G1* 21 0 4 2 1 14 19 -1 -10
62 5 0 2 10 5 -1 1 5 N
63 18 3 -9 14 4 -8 14 -7 3
64 8 5 -10 17 2 -9 19 -7 5
65 2 0 -3 5 0 - 5 0 -2
66 1 6 10 12 -7 3 3 1 9
67 9 0 5 5 0 2 4 0 -7
68+ 8 5§ -10 S5 0 2 13 -5 -8
69 12 5 9 9 7 1 32 14
70+ 365 2 8 -1 1 1 -4 -
n 9 7 1 12 -5 -8 15 -2 -1
72+ 3.0 2 17 4 -7 14 -4 -9
73 305 212 14 -4 -8 1 -1 0
7 9 4 <10 14 -7 3 13 3 N
75 9 7 1 14 -4 -8 13 -3 -Mm
76 8 1 N 5 0 2 9 -1 -15
7 9 0 -5 5 0 2 2 0 -7
72 31 2 5 0 2 2 14
70 18 3 -9 5 -7 8 5 4 -3
20 4 0 -7 7 0 -5 5 0 -2
81+ 31 2 12 3 -10 15 -4 -8
g2 5 0 %6 3 5 .12 8 -5 -10
83 0 7 10 14 -4 -8 14 -3 -2
8a* 30 2 16 4 -9 19 -4 -7
85+ 3 5 92 3 0 2 0 -5 14
86 5 0 2 12 4 -10 13 -2 -8
87+ g8 1 M 30 2 5 0 9
88 21 9 4 8 1 1 13 a -7
89+ 31 2 6-1 -1 9 0 -5
%0 1 3 -9 7 0 -5 17 -3 o0
9+ 301 2 12 -3 0 15 2 -8
92+ 5 Q0 2 14 1 412 19 -1 -10
93+ s 0 2 17 2 -3 22 -2 -1
94+ 8 1 N g8 5 <10 15 -6 1
95 1 6 10 12 -7 3 19 1 -
96* 30 2 16 4. -9 13 -4 -1
97 5 0 2 17 4 -7 15 -4 -9
98 30 2 12 5 -9 17 -5 -1
99+ 301 2 18 -3 -9 21 2 -7
100* 301 2 18 -3 -9 15 2 -1

n 1. These identify those structure seminvariants
approximately equal to 0 or 7 and give the most reliable
estimates (1) for cos T, column headed Calc. Cos. in
Table 1.

For valinomycin the 496 phases corresponding to
the (experimentally determined) |El’s >1.727 were
used to generate the 30000 three-phase structure
seminvariants having the largest values of 4 (4.1). The
discriminants 4 were calculated, arranged in decreasing
order of 141, and the first 100 listed in Table 2 together
with the corresponding seminvariants 7, and the
estimates (+ 1) for cos T, column headed Calc. Cos. in
Table 2.

In Tables 1 and 2 the columns headed No. of
Quintets show the number of quintets Q; in which the

W WO WWWWN W WWWWWWNEBEWNORWWWEBWNNWWNEBWHBWWNWWAEWWNRDNNWNWEW

No. of No. of Calc True
LY Quintets Cross Terms Ciscr. Cos Cos
3 16 7 -34.6 -1 -1.00
.02 28 7 33.7 +1 0.73
.70 30 7 -33.6 -1 -1.00
.87 22 6 -33.4 -1 -0.85
.87 28 7 32.1 +1 0.92
.64 26 ] 32.0 +1 0.93
.65 26 8 3.7 +1 0.67
.99 26 7 31.6 +1 0.99
.74 28 7 29.8% +1 0.99
.58 28 7 28.3 +1 1.00
.66 N 6 28.0 +1 0.99
.63 28 8 -28.0 -1 -0.21
10 17 7 -27.6 -1 -0.43
.63 15 6 27.3 +1 0.82
.47 a7 10 -27.1 -1 -1.00
.9 20 7 -27.0 -1 -0.99
.76 39 8 26.8 +1 1.0C
.08 24 7 -26.7 -1 -0.83
.38 20 7 -25.8 -1 0.95
.83 18 6 25.1 +1 0.97
.62 20 10 -24. -1 -1.00
.79 28 7 23.7 +1 0.93
.24 28 8 23.5 +1 0.76
N 20 6 -23.2 -1 -0.90
.96 20 7 -23. -1 -0.57
77 36 10 22.6 +1 0.77
.55 39 8 -22.3 -1 -1.00
.68 40 6 -22.1 -1 -0.99
44 20 6 -22.0 -1 -0.57
.54 a5 10 -21.3 -1 -1.00
.04 27 9 21.2 +1 0.89
.65 19 6 20.7 +1 1.00
.98 19 6 -20.7 -1 -0.47
.40 26 7 20.5 +1 0.99
.70 17 6 20.3 +1 0.97
.72 32 8 20.3 +1 0.93
4 28 9 -20.0 -1 -1.00
.72 15 6 19.8 +1 1.00
.44 37 9 19.7 +1 0.91
.87 32 6 -19.4 -1 -1.00
.41 29 9 19.1 +1 0.97
.84 26 7 -19.0 -1 -1.00
.55 20 7 19.0 +] 0.91
.00 12 6 18.6 +1 0.88
.27 18 7 18.5 +1 -0.67
2 28 7 18.5 +1 0.96
.92 30 8 18.3 +1 0.99
.44 28 8 18.1 +1 0.70
.49 25 9 18.1 +1 1.C0
.45 26 9 -17.9 -1 -0.68

three-phase seminvariants T; were embedded, i.e. the
number of extensions of the T’s actually used in the
calculation.

Although calculations were made with the number of
contributors n to the average in (3.19) equal to 1, 2, 3,
4 and 5, these all led to essentially the same Tables 1
and 2 with only minor changes in the order in which the
seminvariants T, appeared. Therefore Tables 1 and 2
show only the case that n = 1, i.e. for each T  only that
extension having the maximum value of r, r, r;I(R? —
)4, | was used in (3.19). The columns headed No. of
Cross Terms show the number of cross-terms actually
observed in the quintet having the maximum value of r,
ry 131 (R5— 1)4g|. Since the formulae for the quintet
discriminants, (3.2), (3.7), (3.11) and (3.15) require the
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presence of the full complement of ten cross-terms, the
missing cross-terms, provided there were no more than
four of them, were replaced by unity, the average value
of 1EI% a procedure not difficult to justify. (See, e.g.
Heinerman, 1978, who appears to have been the first to
make this observation for quartets; but see also
Heinerman, Krabbendam & Kroon, 1977.) In this way
many more structure seminvariants T, could be reliably
estimated than would otherwise have been the case, as
inspection of the columns headed No. of Cross Terms
in Tables 1 and 2 shows.

The columns headed Discr. list the discriminants 4
(3.19) of the structure seminvariants 7, arranged in
decreasing order of magnitude. Finally the columns
headed Calc. Cos. and True Cos. show the calculated
values (+1) of cos T, as found from the discriminant
4, and the true values of cos T, respectively.

The asterisks (*) attached to some of the serial
numbers in Columns 1 of Tables 1 and 2 identify those
structure seminvariants T, for which one of the T7’s, j =
0, 1, 2, 3, happens to be a structure invariant. These
cosine invariants would naturally be expected to have
the value +1, approximately, on the basis of the A4
values alone, which for the most part happen to be
sufficiently large (i.e. > 3) to justify this estimate. In all
such cases (about 20% of the 200 listed in Table 1 and
about 25% of the 100 listed in Table 2) the actually
estimated values of the cosine seminvariants cos T, are
in accord with the estimate +1 of the corresponding
cosine invariants.

By working through the entries in Table 1, i.e.
solving the system of linear equations

Phkot, + Phokyt, + Prypyt, =000 7,

one may readily confirm that the aldosterone monohy-
drate structure is solvable via the estimated values of
the three-phase structure seminvariants alone. More
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specifically, Table 1 yields the values, with a twofold
ambiguity, of 75 phases, which are expanded to 300 via
the tangent formula. The negative quartet figure of
merit, NQEST, (DeTitta, Edmonds, Langs &
Hauptman, 1975) is —0-457 and +0-721 for the two
solution sets, so that a unique solution (corresponding
to NQEST = —0-457) is obtained. The initial £ map
shows 25 of the 27 nonhydrogen atoms. The interested
reader may wish to use Table 2 in the same way to
determine for himself the usefulness of the three-phase
structure seminvariants alone in limiting the values of
the individual phases for valinomycin.

Although the aldosterone monohydrate structure
happens to be solvable via the three-phase structure
seminvariants alone, it should be stressed that in the
applications to more difficult structures one would
naturally use the results described here to supplement,
not replace, other methods and other relationships.

4.1. The errors

The average and weighted average of the magnitudes
of the errors are given by

(ICalc. Cos. — True Cos.| ) 4.2)

and
> AlCalc. Cos. — True Cos.!
>4 ’

respectively. Summary tables of the average magnitude
of the error are given for aldosterone monohydrate
(Table 3) and valinomycin (Table 4) as functions of the
discriminant for the 1000 structure seminvariants
having the largest values of 141, arranged in descending
order of the average value of |4| in groups defined by
Columns 2 of these tables. In order to assess the effect
of errors in the observed | El’s the calculations were

4.3)

Table 3. Average magnitude of the error in estimated values for the three-phase cosine seminvariants, cos T, for
aldosterone monohydrate using (a) exact values of the |\E!’s as calculated from the refined structure and (b)
experimentally determined |E\’s

(a) Using exact |EI’s

(b) Using experimental | El’s

Number of
seminvariants Avg. Avg.

Group in group | Discr.| {Error|
1 50 158-4 0-059

2 50 78-2 0-108

3 50 59.0 0-105

4 50 47-6 0-165

5 100 37.2 0-165

6 100 28-7 0-261

7 200 21.8 0-188

8 200 16-2 0-330

9 200 12-8 0-355
All groups 1000 33.9 0-239

Wt avg. Avg. Avg. Wt avg.
|Error| IDiscr.! |Error! |Error!
0-062 163-8 0-065 0-068
0-089 86-0 0-101 0-090
0-081 64-2 0-109 0-097
0-136 51.7 0-311 0-341
0-176 40-8 0-185 0-193
0-274 33.2 0-193 0-217
0-180 26-1 0-300 0-329
0-370 20-3 0-398 0-440
0-354 16-6 0-440 0-435
0-233 383 0-295 0-298



380

THE THREE-PHASE STRUCTURE SEMINVARIANT IN P2,

Table 4. Average magnitude of the error in estimated values of the three-phase cosine seminvariants, cos T, for
valinomycin using (a) exact values of the \E\’s as calculated from the refined structure and (b) experimentally
determined | E|’s

(a) Using exact |EI’s

(b) Using experimental |EI’s

Number of
seminvariants Avg. Avg.

Group in group I Discr. | IError!
1 50 25-6 0-136

2 50 11-9 0-059

3 50 9-3 0-148

4 50 7-6 0-322

5 100 6-1 0-200

6 100 4.9 0-396

7 200 3.7 0-352

8 200 2-7 0-529

9 200 2-1 0-673
All groups 1000 5.5 0-404

performed twice, once with experimentally determined
|EI’s (as for Tables 1 and 2) and then with error-free
|El’s calculated from the refined structures. In the
columns headed Avg. |Errorl and Wt Avg. |Error| of
Tables 3 and 4 are listed the values of (4.2) and (4.3),
respectively, for aldosterone monohydrate and valino-
mycin for the groups defined by Columns 2. Also listed
in these tables are the average values of |41 (columns
headed Avg. IDiscr.!) for these groups. Although Table
1 gives estimates for only the first 200 seminvariants
and Table 2 for the first 100 seminvariants, Tables 3
and 4 list the average magnitude of the error, in groups,
for 1000 seminvariants as a function of the average
values of |41. As expected, for each structure the errors
tend to increase with decreasing |41, although they are
still less than random even when 14! is as small as 3-0.
The discriminants for valinomycin are smaller than
those for aldosterone monohydrate, a consequence of
the greater complexity of valinomycin. Inspection of
Tables 3 and 4 shows that the errors are not a function
of |4l alone but appear to be structure dependent as
well; for fixed 14| the errors are less for valinomycin
than for aldosterone monohydrate. Comparison of the
columns headed Avg. |Errorl and Wt Avg. |Error!
shows that the errors are independent of A, a result
which is not surprising since 4 already enters into the
definition of 4 [via the product r, r,r;, (3.19)] on which
the reliability of the estimate depends. Finally, com-
parison of Columns 4 and 7 (or 5 and 8) shows that, as
expected, the errors tend to increase somewhat when
experimentally determined |El’s are used, but the
increase is not great; in short the accuracy of the
estimates is not overly sensitive to errors in the
observed |EI’s. It should perhaps be pointed out in
conclusion that the accuracy of the observed | El’s as
measured by the R factor,

R = Z“Elobs— lEltruel
ZlE\obs

, 4.4

Wtavg. Avg. Avg. Wt avg.
IError! IDiscr.| |Error! 1Errori
0-126 53.4 0-060 0.053
0-054 24.1 0-177 0-172
0-144 15- 0-166 0-168
0-322 12.4 0.228 0-249
0-197 9.9 0-314 0-323
0-427 8.2 0-400 0-426
0.375 6-3 0-467 0-472
0-549 4.6 0.580 0-565
0-686 3-6 0-646 0-637
0-410 10.0 0-442 0-435

is R = 0-187 for aldosterone monohydrate (2009
reflections) and R = 0-298 for valinomycin (6189
reflections).

5. Concluding remarks

The probabilistic theory of the three-phase structure
seminvariant T, in P2, has been initiated using the
recently introduced extension concept. Employing the
discriminant 4, those seminvariants T, whose values
are probably O or 7, approximately, are identified;
according as 4 > 0 or 4 < 0, T,y ~ 0 or =, respectively.
In this work only a suitable 14-magnitude subset of the
complete second neighborhood of T, has been used.
The ability to make use of the full 41-magnitude second
neighborhood of T, would presumably lead to more
reliable estimates of the structure seminvariants in
general, but this work still remains to be done.

This work was supported in part by Grant No.
CHE76—17582 from the National Science Foun-
dation and RR-05716 from the Division of Research
Resources, DHEW.
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Abstract

Recent derivations of probability expressions for
quartet and quintet structure invariants allow the
reliable estimation of the phase sums of quartets and
quintets in the range 0 to 7. A new quartet figure of
merit, ENQUAC and a new quintet figure of merit,
ENQUIC, based on these estimates are described,
which are particularly useful in non-centrosymmetric
symmorphic and polar space groups. An adapted
tangent-refinement procedure employing selected trip-
lets with a phase sum of 0, together with the quartet
and quintet phase estimates, enables enantiomorph-
specific phase refinement. The way in which the figures
of merit and the refinement technique can be used in
various practical procedures is demonstrated and
applications to two structures in space group Pl are
presented.

Introduction

Although more and more structures of moderate
complexity (60 to 80 independent atoms) are solved by
direct methods, in non-centrosymmetric symmorphic
and polar space groups, the application of the triplet
relation fails for numerous structures: parts of the
phase determination, which are easy to carry out in
other space groups, give rise to serious problems, such
as:

(i) The enantiomorph definition; in the space groups
Pl, P2, P2,, C2 and Cc it is a difficult procedure,
because it is not possible to select a starting reflection,
which is enantiomorph-sensitive (@ ~ +7/2).

(i) The tangent refinement; occasionally the
resulting phases are centrosymmetric, even starting
with a correct phase set.
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(iii) The various figures of merit, based on triplets;
they do not discriminate as consistently between
correct and incorrect phase sets as they do in non-
symmorphic and non-polar space groups. Some of
these difficulties have been dealt with by Schenk
(1972), who indicated that they can be ascribed to the
influence of the space group symmetry and the
properties of the >, relation.

These problems do not exist if the actual values of
the phase sums,

¢3= ¢H+ ¢K+ ¢—H—K’ (1)

could be used instead of assuming all @, to be zero. Of
course the &P, values cannot be evaluated from IE|
magnitudes alone, and in practice only |®,! values can
be calculated, of which the quality is not yet sufficiently
good to define reliable enantiomorph-specific pro-
cedures (e.g. B, , formula, Karle & Hauptman, 1958;
TPROD formula, Hauptman, Fischer, Hancock &
Norton, 1969; MDKS formula, Fischer, Hancock &
Hauptman, 1970; and the strengthened triplet formula,
Giacovazzo, 1977).

Test results of recent expressions for quartets and
quintets proved that the absolute values |®,| and | ®;|
of their phase sums,

¢4= ¢H+¢K+¢L+ ¢~H—K—L (2)

and
=D+ D+ P, + Dy + Dy v s

(3

can be estimated with the required accuracy for
enantiomorph-specific procedures. Most of these results
are described in papers by Hauptman (1975), van der
Putten & Schenk (1976), Schenk & van der Putten
(1977), van der Putten & Schenk (1977) and Gilmore
(1977). More evidence will be given in this paper.

The main problem left when applying estimated
phase sums in structure determination arises from the
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